
PalmSource Confidential

Device Abstraction Layer
(DAL) Reference

Palm OS® 5 PDK/SPK

PalmSource Confidential

Written by Doug Fulton, Anna Schaller, Mark Dugger, and Christopher Bey.
Engineering contributions by Patrick Porlan, Michel Piquemal, Regis Nicolas, Thierry Martel, Vincent
Leclaire, Larry Lai, Jim Schram, Steve Minns, Bruce Thompson, Frank Flonnoy, Tim Wiegman, Andy Stew-
art, Peter Wagner, Lee Taylor, and Mark Easterday.

Copyright © 1996-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and you
may not modify this technical documentation or make any derivative work of it (such as a translation, localization,
transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY
WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

DAL Reference
Document Number 5043-009
January 27, 2004

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmsource.com

DAL Reference iii
PalmSource Confidential

Table of Contents
 About This Document xiii

What This Document Contains xiii
The HAL . xiv
The kHAL. . xv
The KAL . xv

Related Documentation xvi
Additional Resources xviii
Typographical Conventions xix

Part I Hardware Abstraction Layer (HAL)

1 The HAL 1
HAL Interface . 1
Sample HAL. . 2
File names. . 2
Assembly-Language Code. 2
Intended Audience 3

What This Section Contains 3

2 Battery Support 5
Battery Support Constants 5

HALDockStatus Constants 5
Battery Support Data Structures 6

SysBatteryKind . 6
SysBatteryState . 7

Battery Support Functions 8
HALBatteryGetInfo. 8
HALBatteryGetValidKinds 9
HALBatterySetInfo 10
HALDockStatus . 10

3 Tracing 13
Trace Data Structures 13
Trace Functions. 13

iv DAL Reference
PalmSource Confidential

HALTraceClose . 14
HALTraceInit . 14
HALTraceOutputB 14
HALTraceOutputT 14
HALTraceOutputVT 15

Trace Macros . 16

4 Digitizer Support 17
Digitizer Support Data Structures 18

Coord. 18
PointType . 18

Digitizer Support Functions 18
HALPenCalibrate 18
HALPenRawToScreen 19
HALPenResetCalibration 20
HALPenScreenToRaw 20

5 Display 23
Display Data Constants 23

Display Attribute Constants 23
Display Data Structures 30

RGBColorType. 30
Display Functions . 31

HALDisplayDrawBootScreen 31
HALDisplayGetAttributes. 32
HALDisplayGetPalette 33
HALDisplaySetAttributes 34
HALDisplaySetPalette 34
HALDisplayDoze 35
HALDisplayLock 36
HALDisplaySleep 37
HALDisplayUnlock 38
HALDisplayWake 39

6 Initialization 41
HwrPostDebugInit 41

DAL Reference v
PalmSource Confidential

HwrPreDebugInit 42
HwrPreRAMInit . 42
InitStage1 . 43
InitStage2 . 43
Reset_A . 44

7 Interrupt Handling 45
Interrupt Handling Data Structures 45

InterruptAllStatus 45
IRQState . 45

Interrupt Functions . 46
HALInterruptAllSetStatus 46
HALInterruptGetHandler 46
HALInterruptSetHandler 47
HALInterruptSetState. 47
 . 47
HwrInterruptsInit 47

8 Keyboard Support 49
Keyboard Support Masks 49

Key Mask . 49
Keyboard Support Data Structures 50
Keyboard Support Functions 50

HALKeyGetRates 50
HALKeyGetState. 51
HALKeyResetDoubleTap 51
HALKeySetMask. 52
HALKeySetRates. 52

9 Power States 55
Power States Data Structures 55
Power States Functions 56

HALPowerGetAutoOffEvtTime 56
HALPowerGetAutoOffSeconds 56
HALPowerSetAutoOffEvtTime 56
HALPowerSetAutoOffSeconds. 57

vi DAL Reference
PalmSource Confidential

HALPowerSleepReady 57

10 Miscellaneous Functions 59
Random Seed . 59

HALRandomInitializeSeed 59
Boot Functions . 60

HALSetInitStage . 60
PalmOSMain . 60

Hardware Events . 61
HALEventPost . 61
HALEventRegisterCallback 62

Reset . 62
HALReset . 62

Miscellaneous Functions. 63
HALGetHwrMiscFlags 63
HALGetHwrMiscFlagsExt. 63
HALGetHwrWakeUp. 63
HALGetROMToken 64
HALOEMGetCompanyID 64
HALOEMGetDeviceID 65
HALOEMGetHALID 65
HALProcessorID . 65
HALSetHwrMiscFlags 65

11 Memory 67
Memory Data Structures. 67

HALMemoryMap 67
HALMemoryRegionType 67
HALMemoryType 68
Example . 69

Memory Map Functions 70
HALMemoryGetMemoryMap 70

Memory Protection Functions 70
HALMemoryGetStorageAreaProtectionState. 71
HALMemorySetStorageAreaProtectionState 71

DAL Reference vii
PalmSource Confidential

12 Real Time Clock Support 73
Real Time Clock Support Data Structures 73
Real Time Clock Support Functions 73

HALTimeGetAlarm. 73
HALTimeGetSeconds 74
HALTimeGetSystemTime 74
HALTimeGetSystemTimerInterval 75
HALTimeSetAlarm 75
HALTimeSetSeconds 76

13 Serial Drivers 77
Brief Overview of Virtual Drivers. 77

Virtual Driver Data Structures 78
VdrvAPIType . 84
VdrvConfigType . 85
VdrvDataPtr. 86

Virtual Driver Functions 86
HALSerialClose . 86
HALSerialControl 86
HALSerialControlCustom 90
HALSerialEntryPoint 91
HALSerialOpen . 92
HALSerialStatus . 94
HALSerialWrite . 95

USB Data Structures 95
USB Driver Functions 96

UsbConnect . 96
UsbDisconnect . 96
UsbHwrInit . 97
UsbRequestGetExtConnectionInfo 97

14 Screen 99
Blitter Supports High Density 100
Intermediate Buffer Not Needed 100

Screen Data Structures. 101
AbsRectType . 101

viii DAL Reference
PalmSource Confidential

BitmapCompressionType 102
BitmapFlagsType. 102
BitmapTypeV3 . . 104
BltBitmapType . . 106
CanvasType . . 108
ColorTableType . 109
CustomPatternType 109
DrawStateType . 110
IndexedColorType 112
PointType . . 112
RectangleType . . 112
RGBColorType. . 113
WinLockInitType 113

Window Constants . 114
Window Coordinate System Constants 114
WinDrawOperation Enumeration 114

Screen Manager Functions 117
HALRedrawInputArea 117
HALScreenDefaultPalette 118
HALScreenDrawNotify 118
HALScreenGetColortable 119
HALScreenInit . . 119
HALScreenLock . 120
HALScreenPalette 121
HALScreenSendUpdateArea. 122
HALScreenUnlock 123
HALScreenUpdateBitmap 124

Blitter Functions . 124
HALDraw_Bitmap 124
HALDraw_Chars 126
HALDraw_FindIndexes. 127
HALDraw_GetPixel 128
HALDraw_Line . 128
HALDraw_Pixels 129
HALDraw_Rectangle 130

DAL Reference ix
PalmSource Confidential

HALDrawInit . 131

15 Sound Support 133
HAL Sound Structures and Constants 134
HAL Sound Support Functions 136

HALPlaySmf . 136
HALSoundClose 136
HALSoundDispose 137
HALSoundInitialize 137
HALSoundIoctl . 137
HALSoundOff . . 139
HALSoundOpen 139
HALSoundPlay . 140
HALSoundRead . 140
HALSoundSleep 141
HALSoundWake 141
HALSoundWrite 141

16 Timer Support 143
Timer Support Data Structures 143
Timer Support Functions 143

HALDelay . 143

Part II Kernel Hardware Abstraction Layer (kHAL)

17 kHAL Functions 147
Overview . 147
kHAL Functions . 149

kHAL_CPULock 149
kHAL_CPUUnlock 149
kHAL_CreateInitialTaskContext 150
kHAL_DisableInt 150
kHAL_Doze . . 150
kHAL_EnableInt 151
kHAL_Init . 151
kHAL_RegisterInterruptHandler 151

x DAL Reference
PalmSource Confidential

kHAL_SetTaskReturnValue 152
kHAL_SwitchToFirstTask 153

Part III Kernel Abstraction Layer (KAL)

18 The KAL 157
Kernel Object Types 157
Object Count Limits. 158
Object ID Numbers . 158

19 KAL Generic API 161
KAL Generic Constants 161

KAL Error Constants 161
KAL Timeout Constants. 162

KAL Startup Functions 163
KALInit . . 163
KALStart . 163

20 Tasks 165
Creating, Starting, and Stopping a Task 165
Synchronizing Tasks 165

Delaying . 166
Wait and Wake . . 166
Suspending and Resuming 168

Tasks Lists . . 168
Priorities and Scheduling 169
Task Structures, Constants, and Types 170

Task State Constants 170
Task Wait Cause Constants 171
KALTaskCreateParamType 172
KALTaskInfoType 172
KALTaskProcPtr . 174

Task Functions . 175
KALTaskCreate . 175
KALTaskDelay . . 175
KALTaskDelete . 176

DAL Reference xi
PalmSource Confidential

KALTaskExit. . 177
KALTaskGetCurrentID 178
KALTaskGetInfo . 178
KALTaskResume 179
KALTaskStart . 179
KALTaskSuspend 180
KALTaskSwitching 181
KALTaskWait . 182
KALTaskWaitClr 182
KALTaskWake . . 183

21 Semaphores 185
The Semaphore Count. 185
Semaphore Structures and Constants 186

KALSemaphoreInfoType 186
Semaphore Functions 187

KALSemaphoreCreate 187
KALSemaphoreDelete 188
KALSemaphoreGetInfo 188
KALSemaphoreSignal 189
KALSemaphoreWait 189

22 Mutexes 191
Mutex Structures and Constants 192

KALMutexInfoType 192
Mutex Functions . 192

KALMutexCreate 192
KALMutexDelete 193
KALMutexGetInfo 193
KALMutexRelease 194
KALMutexReserve 195

23 Event Groups 197
Event Group Structures and Constants 197
Event Group Functions 199

KALEventGroupClear 199

xii DAL Reference
PalmSource Confidential

KALEventGroupCreate 200
KALEventGroupDelete 201
KALEventGroupGetInfo 201
KALEventGroupRead 202
KALEventGroupSignal 202
KALEventGroupWait 203

24 Mailboxes 205
Mailbox Messages . 205
Mailbox Structures and Constants 206
Mailbox Functions . 206

KALMailboxCreate 206
KALMailboxDelete 207
KALMailboxGetInfo 208
KALMailboxSend 208
KALMailboxWait. 209

25 Timers 211
Timer Structures, Constants, and Types 212
Timer Functions . 213

KALTimerCreate 213
KALTimerDelete 214
KALTimerGetInfo 215
KALTimerSet . 215

 Index 217

DAL Reference xiii
PalmSource Confidential

About This
Document
The Device Abstraction Layer (DAL) for Palm OS® 5 is software that
separates the Palm OS from device-specific hardware. When the
Palm OS is ported to a new hardware platform, the DAL functions
must be implemented and fine-tuned to match the resources and
requirements of that new hardware.

PalmSource, Inc. ships a sample DAL implementation that runs on a
well-established reference board. The DAL must be modified to
support your reference board and the hardware peripherals added
to it. The code includes two trees: the
Development Kit\Palm_OS_DAL_Support tree contains code
that is relevant to all reference boards and, in general, need not be
changed. Under the \Development Kit\Samples\ directory
you will find DAL reference implementation. It must be modified to
support your hardware.

This guide describes the routines in the DAL that you are likely to
modify. When modifying a routine, make sure you preserve the
function prototype and purpose as described in this reference and in
the comments in the source code. Most of these routines are
exported from the DAL so that they can be called by the Palm OS.
For a complete listing of routines that make up the DAL interface,
consult the DAL.mdf file.

What This Document Contains
The principal sections of this document are devoted to the DAL’s
three components, the Hardware Abstraction Layer (HAL), the
Kernel Hardware Abstraction Layer (kHAL), and the Kernel
Abstraction Layer (KAL). A fourth DAL component, the Runtime
Abstraction Layer (RAL), has no user servicable parts and so isn’t
described in this document.

About This Document
What This Document Contains

xiv DAL Reference
PalmSource Confidential

The HAL
The Hardware Abstraction Layer (HAL) contains the DAL functions
that provide the hardware-dependent implementation of
fundamental Palm OS features. The Palm OS calls these functions to
provide the services required by third-party applications and by
other parts of the Palm OS. The HAL functions constitute a public
interface for the Palm OS and must be preserved as such. HAL
functions will probably need to be modified to work with specific
hardware. For more details, see the Chapter 1, “The HAL,” on
page 1.

The HAL functions are divided into functional topics and presented
in these sections:

• Chapter 1, “The HAL.” Overview of HAL and modification
of the HAL.

• Chapter 2, “Battery Support.” Information about the device
battery, listing of supported kinds, and status of cradle
docking.

• Chapter 3, “Tracing.” Facilities to follow a program’s
execution by outputting messages along with sender
information.

• Chapter 4, “Digitizer Support.” The digitizer is the software
that decodes touch screen stylus input.

• Chapter 5, “Display.” Routines that make up the display
driver, including those that set and get the graphical
attributes and dimensions supported by the screen.

• Chapter 6, “Initialization.” System initialization, including
hardware and memory initialization.

• Chapter 7, “Interrupt Handling.” Enable/disabling
interrupts, getting/setting interrupt handlers.

• Chapter 8, “Keyboard Support.” Repeat actions, double-tap,
and state of the hard keys on the device. Also a bitmask for
identifying keys.

• Chapter 9, “Power States.” Routines that handle power
states, particularly the auto-off alarm.

• Chapter 10, “Miscellaneous Functions.” All the functions that
don’t fit the other categories.

About This Document
What This Document Contains

DAL Reference xv
PalmSource Confidential

• Chapter 11, “Memory.” Routines concerned with the
memory map and memory protection.

• Chapter 12, “Real Time Clock Support.” Getting/setting
alarms and getting/setting the real-time clock.

• Chapter 13, “Serial Drivers.” The routines that a virtual
(serial) driver must support in order to work with the new
serial manager of the Palm OS.

• Chapter 14, “Screen.” Drawing primitives contained in the
blitter. Screen Manager routines described as well.

• Chapter 15, “Sound Support.” Turning sounds on and off.

• Chapter 16, “Timer Support.” Timed delay.

The kHAL
The Kernel Hardware Abstraction Layer (kHAL) lies face-down just
above the kernel (Palm Kernel 1.0). The kHAL defines a set of
functions that you implement to run on a specific ARM CPU.

The kHAL is documented in Chapter 17, “kHAL Functions,” on
page 147.

The KAL
The Kernel Abstraction Layer provides objects, such as tasks,
semaphores, timers, and so on, that are allocated and defined by the
kernel. You can’t reimplement the KAL; however, you can use the
functions and structures it defines in your implementations of the
HAL and kHAL functions.

Chapter 18, “The KAL,” on page 157 provides a brief definition of
each of the KAL objects. The rest of the KAL chapters do the real
work:

• Chapter 19, “KAL Generic API.”

• Chapter 20, “Tasks.”

• Chapter 21, “Semaphores.”

• Chapter 22, “Mutexes.”

• Chapter 23, “Event Groups.”

• Chapter 24, “Mailboxes.”

About This Document
Related Documentation

xvi DAL Reference
PalmSource Confidential

• Chapter 25, “Timers.”

Related Documentation
The following documents contain information that will further your
education on the DAL for Palm OS 5. All these documents pertain to
the Palm OS on the ARM platform only. Like-titled documents from
PDKs prior to Palm OS 5 pertain to the Motorola 68000 platform
only.

The DAL for Palm OS 5 differs in specific, though very limited,
areas from earlier releases of the DAL for Palm OS 5. In addition, the
SDK (Software Development Kit) for Palm OS 5 has undergone
minor revisions to support new technologies. Consult
documentation in the SDK for details.

Document Description

Introduction to the PDK Guide that orients you to all the kits, tools, code, and
documentation on the PDK (Product Development
Kit).

Architectural Overview The manual provides background and conceptual
information on the design of Palm OS 5.

Shared Library Design Guide This manual provides information on customizing
Palm OS using ARM-native code. Discussion
includes writing ARM shared libraries, integrating
ARM code with 68K applications, and creating OS
patches.

DAL Customization Guide The manual provides background, conceptual, and
how-to information on the Device Abstraction Layer
of the ROM image. This manual complements the
APIs discussed in the DAL Reference. It provides the
common design and implementation information
that is needed to port the Palm OS® to a custom
hardware platform. Information related to specific
technologies can be found in the relevant technology
manual.

About This Document
Related Documentation

DAL Reference xvii
PalmSource Confidential

DAL Reference This manual is a companion to the DAL Customization
Guide. It describes the API routines in the Hardware
Abstraction Layer (HAL), the kernel Hardware
Abstraction Layer (kHAL), and the Kernel
Abstraction Layer (KAL) . These routines serve two
purposes. They are either modifed by you to
accomodate specific hardware features, or called to
accomplish a particular task.

Building a ROM This guide begins by providing a description of the
various ROM components. It then describes the tools
and steps needed to integrate the DAL, the Palm OS®,
and the built-in applications into an image for
installation in flash ROM or in RAM.

Display Driver Design Guide Technology guide on creating a hardware-specific
display driver that communicates with the screen
manager and the blitter routines.

Serial Communications Driver
Design Guide

Technology guide on writing virtual communication
drivers. Supported drivers include serial as well as
USB.

Expansion Manager Solutions
Guide

Technology guide that provides you with
background information and instruction on
extending Palm OS to include expansion slot
technology. The information in this guide builds on
the Expansion Manager and VFS Manager chapters
in the Palm OS Programmer’s Companion and Palm OS
Programmer’s API Reference.

Sound Driver Design Guide Technology guide to creating a hardware-specific
sound driver that communicates with the Sound
Manager.

Ethernet Interface Driver Design
Guide

Technology guide to implementing an Ethernet
interface on the Palm OS. This document is
particularly relevant to those implementing wireless
Ethernet interfaces such as IEEE 802.11b.

Document Description

About This Document
Additional Resources

xviii DAL Reference
PalmSource Confidential

Additional Resources
• Documentation

PalmSource, Inc. publishes its latest versions of documents
for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource, Inc. and its partners host training classes for
Palm OS developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Customizing Palm OS
Simulator

Guide to creating a custom version of the Palm OS
Simulator.

Debugging a ROM Image This manual provides conceptual, guidance, and
reference information for developers who want to

use Palm OS Debugger to debug Palm OS
applications and shared libraries.

Building Palm OS Application
Interfaces

This book describes a set of developer tools that you
can use to create, edit, process, and compile Palm OS
resources--forms, menus, text strings, and controls--
for Palm OS applications. The Palm OS resource tools
operate on an XRD file format rather than Macintosh
resource binary format (RSRC) format that was
previously used. GenerateXRD, PalmRC, and
PRCMerge are the tools are used in this process.

Document Description

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Document
Typographical Conventions

DAL Reference xix
PalmSource Confidential

Typographical Conventions
Bold text

indicates emphasis.

Courier font
is used for functions, types and file names.

underlining indicates a hyperlinked cross-
reference.

Italic Text
must be replaced by the user with appropriate information.

The following symbols are used to indicate whether an argument’s
value is set by the caller, by the function, or both:

• -> the argument’s value is set by the caller

• <- the argument’s value is set by the function

• <-> the argument’s value is set by the caller and then reset
by the function

About This Document
Typographical Conventions

xx DAL Reference
PalmSource Confidential

PalmSource Confidential

Part I
Hardware
Abstraction Layer
(HAL)

PalmSource Confidential

DAL Reference 1
PalmSource Confidential

1
The HAL
This section describes the HAL, or Hardware Abstraction Layer,
which contains routines that provide the basic functionality of the
Palm OS. The HAL is a a mediating layer between the Palm OS and
the underlying hardware, insulating the Palm OS from the need to
know about hardware implementation. For example, when the
Palm OS system manager wants to know how much life is left in the
battery, it calls the HAL function HALBatteryGetInfo, which
function talks to the hardware. Only the Palm OS—and other HAL
functions—can invoke the HAL routines. They can’t be called from
third-party application software.

The routines of the HAL must be adapted to the particular
hardware of a device. Thus, the HAL is different for each basic
ARM-processor reference board. The HAL undergoes further
modification when supplemental hardware peripherals are added
to the reference board.

HAL Interface
While customizing HAL functions for your hardware, keep in mind
that the functions described here form a public interface required by
the Palm OS. You must continue to support these functions for Palm
OS to work properly. Your implementations must preserve the
function prototype, accomplish the same purpose, and perform the
same tasks as those in the sample HAL.

A few routines that are purely internal to the HAL are included in
this reference if they are likely to require modification. Otherwise,
routines called only by other HAL routines are not documented
here. Please consult the source code for details on their operation.
The HAL interface is a subset of the DAL interface. For a complete
listing of the routines that make up the DAL interface, see the
DAL.mdf file.

The HAL

2 DAL Reference
PalmSource Confidential

Sample HAL
The sample DAL shipped by PalmSource, Inc. includes a sample
HAL. This implementation was written for the DBPXA25x or
DBPXA26x reference boards from Intel. The files are located in two
main places. Files that you will not need to modify are found under
the Development Kit\Palm_OS_DAL_Support directory. These
will generally remain the same for all reference boards. Files that
you modify for your hardware are shipped to you under
\Development Kit\Samples\ directory. You will probably
clone these files and then start modifying them to match your
hardware requirements.

File names
Each function description in this reference includes the name of the
file in which the function is defined. Files that are under the
Development Kit\Palm_OS_DAL_Support directory have
generic names such as ROMBoot.c and HALDebug.c, because they
apply to all reference boards. Files that you must modify are
shipped with names such as LBC_KeyMgr.c and
CTLDisplayBoot.c . They are all found under the Development
Kit\Samples directory of the development kit.

When you clone the sample to establish your source code, you will
most likely attach the name of your particular reference board as a
prefix to the names of files.

Assembly-Language Code
For the sake of performance, a few very low-level routines are
written in ARM assembly language. Examples are
RegionInit_A.s and Reset_A.s.

The routines written in assembly language, of course, interact with
C-language functions. In some cases, they use symbolic constants
that are conceptually the same and must have the same value. For
instance, a constant value might be defined by a #define in a C-
language header and by an EQU in the assembly language header.
Modifying one constant definition is not sufficient: the assembly
pre-processor replaces only occurrences of the equate identifier.

The HAL
What This Section Contains

DAL Reference 3
PalmSource Confidential

Occurrences of the #define identifier are replaced at a separate
time by the C compiler’s pre-processor.

IMPORTANT: When modifying constant values in an assembly
language routine, make sure to modify any C-language files that
use the same constants. The same advice can apply to a variable
and a constant, although this situation is less common.

Whenever you modify the HAL source code, pay attention to the
comments. Important dependencies like these are called out in the
code comments.

Intended Audience
The intended audience for this section is the ARM expert
responsible for porting Palm OS to a new ARM CPU platform.

The development kit you received includes a sample HAL
implementation on a well-known reference board. In general, you
will start with that code and modify it to support the specific
hardware of your reference board and device.

What This Section Contains
The HAL section of the DAL Reference includes the following
chapters and topics:

• Chapter 1, “The HAL.” Overview of HAL and modification
of the HAL.

• Chapter 2, “Battery Support.” Information about the device
battery, listing of supported kinds, status of cradle docking.

• Chapter 3, “Tracing.” Facilities to follow a program’s
execution by outputting messages along with sender
information.

• Chapter 4, “Digitizer Support.” The “digitizer” is the
software that decodes touch screen stylus input.

• Chapter 5, “Display.” Routines that make up the display
driver, including those that set and get the graphical
attributes and dimensions supported by the screen.

The HAL
What This Section Contains

4 DAL Reference
PalmSource Confidential

• Chapter 6, “Initialization.” System initialization, including
hardware and memory initialization.

• Chapter 7, “Interrupt Handling.” Enable/disabling
interrupts, getting/setting interrupt handlers.

• Chapter 8, “Keyboard Support.” Repeat actions, double-tap,
and state of the hard keys on the device. Also a bitmask for
identifying keys.

• Chapter 9, “Power States.” Routines that handle power
states, particularly the auto-off alarm.

• Chapter 10, “Miscellaneous Functions.” All the functions that
don’t fit the other categories.

• Chapter 11, “Memory.” Memory map and memory
protection.

• Chapter 12, “Real Time Clock Support.” Getting/setting
alarms and getting/setting the real-time clock.

• Chapter 13, “Serial Drivers.” The routines that a virtual
(serial) driver must support in order to work with the new
serial manager of the Palm OS.

• Chapter 14, “Screen.” Drawing primitives contained in the
blitter. Screen manager routines described as well.

• Chapter 15, “Sound Support.” Turning sounds on and off.

• Chapter 16, “Timer Support.” Timed delays.

DAL Reference 5
PalmSource Confidential

2
Battery Support
The DAL implementation must enqueue a low battery event when
the battery level is low enough to need user attention.

This chapter describes the API functions of the HAL that deal with
the battery. The include files HALBattery.h and HALDock.h
contain definitions for the data types and routines discussed in this
chapter.

Battery Support Constants

HALDockStatus Constants
The following constants are returned from HALDockStatus. They
indicate which state the hardware is in. The constants are defined in
the include file HALDock.h

Constant Value Description

kHALDockStatusUndocked 0x0000 Nothing is attached to the
connector.

kHALDockStatusModemAttached 0x0001 Some type of modem is attached
to the connector.

kHALDockStatusDockAttached 0x0002 Some type of dock is attached to
the connector.

kHALDockStatusUsingExternalPower 0x0004 The connector is using some type
of external power source.

kHALDockStatusCharging 0x0008 Connector is in cradle and
internal power cells are
recharging.

kHALDockStatusUSBCradleAttached 0x0010 USB hardware is attached to the
connector.

Battery Support
Battery Support Data Structures

6 DAL Reference
PalmSource Confidential

Battery Support Data Structures

SysBatteryKind
The SysBatteryKind data type is used to declare parameters that
indicate the kind of battery used by the handheld. The constants
defined in the SysBatteryKindTag enumeration correspond to
the different kinds of batteries, such as Alkaline or Lithium Ion.
These constants are passed to HALBatteryGetInfo and
HALBatterySetInfo, and HALBatteryGetValidKinds. The definition
for SysBatteryKindTag is found in CmnBatteryTypes.h.

All the batteries defined here are removable batteries, except
sysBatteryKindLiIon and sysBatteryKindLiIon1400. The
latter are rechargeable from the device. A given device HAL can
provide the following battery support: either support for all
removable kinds or support for one of the two LiIon kinds.

enum SysBatteryKindTag {
sysBatteryKindAlkaline=0,
sysBatteryKindNicad,
sysBatteryKindLiIon,
sysBatteryKindRechAlk,
sysBatteryKindNiMH,
sysBatteryKindLiIon1400,
sysBatteryKindLast=0xFF

};

typedef Enum8 SysBatteryKind;

kHALDockStatusUSBPeripheralAttached 0x0020 USB Peripheral is attached to the
connector.

kHALDockStatusPeripheralAttached 0x0040 RS232 Peripheral is attached to
the connector.

kHALDockStatusMfgTestCradleAttached 0x0080 The manufacture’s cradle is
attached to the connector.

Constant Value Description

Battery Support
Battery Support Data Structures

DAL Reference 7
PalmSource Confidential

Field Description

SysBatteryState
The SysBatteryState data type is used to declare parameters
that indicate the state of the handheld’s battery. The constants
defined in the SysBatteryStateTag enumeration correspond to
the different battery states. These constants are passed to
HALBatteryGetInfo. The definition for SysBatteryStateTag is
found in CmnBatteryTypes.h.

enum SysBatteryStateTag {
sysBatteryStateNormal=0,
sysBatteryStateLowBattery,
sysBatteryStateCritBattery,
sysBatteryStateShutdown,

};

typedef Enum8 SysBatteryState;

Field Description

sysBatteryKindAlkaline

sysBatteryKindNicad

sysBatteryKindLiIon

sysBatteryKindRechAlk

sysBatteryKindNiMH

sysBatteryKindLiIon1400

sysBatteryKindLast

sysBatteryStateNormal

sysBatteryStateLowBattery

sysBatteryStateCritBattery

sysBatteryStateShutdown

Battery Support
Battery Support Functions

8 DAL Reference
PalmSource Confidential

Battery Support Functions

HALBatteryGetInfo Function
Purpose This function returns information about the handheld’s battery: the

kind of battery, the battery state, the percent of power left in the
battery, and whether the handheld is connected to an external
power supply.

Prototype Err
HALBatteryGetInfo(UInt16 *oWarnThresholdPercen
t, UInt16 *oCriticalThresholdPercent,
UInt16 *oShutdownThresholdPercent,
UInt32 *oWarnMaxTicks, SysBatteryKind *oKind,
UInt8 *oPluggedIn, SysBatteryState *oState,
UInt8 *oPercent)

Parameters ← oWarnThresholdPercent
Pointer to the voltage warning threshold, or null.

← oCriticalThresholdPercent
Pointer to the voltage critical threshold, or null.

← oShutdownThresholdPercent
Pointer to the voltage shutdown threshold, or null.

← oWarnMaxTicks
Pointer to timeout until next battery warning, or null.

← oKind
Kind of battery supported by the handheld. The values for
this parameter are the fields defined in the enumeration
SysBatteryKindTag. Refer to the section
“SysBatteryKind” for a description of the available constants.

← oPluggedIn
Non-zero if external power is currently being supplied to the
handheld.

← oState
Current state of the battery, computed from its voltage and
kind. The values for this parameter are the fields defined in
the enumeration SysBatteryStateTag. Refer to the
section “SysBatteryState” for a description of the available
constants.

Battery Support
HALBatteryGetValidKinds

DAL Reference 9
PalmSource Confidential

← oPercent
Percent return value of remaining load.

Returns 0
If no error.

Comments LBC_HALBattery.c

Replaces HwrBattery() and HwrPluggedIn() functions from
the HAL API for Palm OS 4.0.

See Also HALBatterySetInfo
HALBatteryGetValidKinds
HALDockStatus
SysUILaunch

HALBatteryGetValidKinds Function
Purpose This function returns a list of available battery types.

Prototype Err HALBatteryGetValidKinds
(const SysBatteryKind **oKind)

Parameters ← oKind
A pointer to an array of valid battery kinds. The last valid
value will always be sysBatteryKindLast. The values for
this array are the fields defined in the enumeration
SysBatteryKindTag. Refer to the section
“SysBatteryKind” for a description of the available constants.

Returns 0
If no error.

Comments LBC_HALBattery.c

See Also HALBatteryGetInfo
HALBatterySetInfo
HALDockStatus
SysUILaunch

Battery Support
HALBatterySetInfo

10 DAL Reference
PalmSource Confidential

HALBatterySetInfo Function
Purpose This function allows the battery type to be modified dynamically.

Prototype Err HALBatterySetInfo(SysBatteryKind *iKind,
UInt16 *oWarnThresholdPercent,
UInt16 *oCriticalThresholdPercent,
UInt16 *oShutdownThresholdPercent)

Parameters → iKind
Kind of battery supported by the handheld. The values for
this parameter are the fields defined in the enumeration
SysBatteryKindTag. Refer to the section
“SysBatteryKind” for a description of the available constants.

← oWarnThresholdPercent
Pointer to the voltage warning threshold, or null.

← oCriticalThresholdPercent
Pointer to the voltage critical threshold, or null.

← oShutdownThresholdPercent
Pointer to the voltage shutdown threshold, or null.

Returns 0
If no error.

Comments LBC_HALBattery.c

Replaces HwrBattery() function from the HAL API for Palm OS
4.0.

See Also
HALBatteryGetInfo
HALBatteryGetValidKinds
HALDockStatus
SysUILaunch

HALDockStatus Function
Purpose Returns a bitmap indicating the hardware docking status. Note that

docking is different from being connected to power. Docking
implies a hardware connection for the HotSync. There are bitfield
constants defined for the different possible states, such as undocked,

Battery Support
HALDockStatus

DAL Reference 11
PalmSource Confidential

modem attached, USB cradle attached, etc. The bitmap can have
more than one bit set at any given time.

Prototype Err HALDockStatus(UInt16 *status)

Parameters ← status
Bitfield. Refer to the section on “HALDockStatus Constants”
on page 5 for a description of the values returned from this
routine.

Returns 0
If no error.

Comments HALDock.c

This function is called by SysBatteryInfo(), HwrPluggedIn(),
and HwrDockSignals(). The bit definitions for the inputs and
outputs are defined in HALDock.h.

All unused bits in the bitmap are reserved for future use by Palm.

See Also HALBatteryGetInfo
HALBatterySetInfo
HALBatteryGetValidKinds
SysBatteryInfo

Battery Support
HALDockStatus

12 DAL Reference
PalmSource Confidential

DAL Reference 13
PalmSource Confidential

3
Tracing
In the Palm OS context, traces are an easy way to follow a program’s
execution by outputting messages along with sender information.
By using traces in conjunction with a tool like Serial Reporter or
HyperTerminal, it is easy to automatically sort messages and
provide automatic filtering while debugging.

If you decide to implement these functions, you may also have to
modify two other functions in HALTrace.c. They are
HALTraceInit() and HALTraceClose().

For details on the tracing facilities, see “Debugging” in DAL
Customization Guide.

Trace Data Structures
None applicable.

Trace Functions
The APIs described in this section provide an easy way to
communicate with the Reporter and to format raw data like
memory buffers.

“B” suffix means “trace buffer”. This ends up in an organized
hexadecimal dump in the Reporter.

“VT” and “VTL” suffixes mean the function is called like the
standard C function vprintf. The “L” means “add carriage return
at end of trace”.

“T” and “TL” suffixes mean the function is called like the standard
C function printf. The “L” means “add carriage return at end of
trace”.

Tracing
HALTraceOutputB

14 DAL Reference
PalmSource Confidential

HALTraceClose
Function that takes no arguments and returns nothing. Defined in
LBC_ROMHardware.c. It closes the serial connection opened by
HALTraceInit.

HALTraceInit
Function that takes no arguments and returns nothing. You must
explicitly call this function before you call the other trace functions.
A good place to do so is in the HALSetInitiStage(UInt32
uiValue) routine in the LBC_ROMHardware.c file, when
uiValue equals 3. See also HALTraceClose.

HALTraceOutputB Function
Outputs a memory dump trace to a trace receiver/display system,
normally the Serial Reporter with Palm Reporter.

Prototype void HALTraceOutputB(unsigned short aErrModule,
const void *aBuffer, long aBufferLen)

Parameters → aErrModule
An error class, must be unique among all modules that use
traces.

→ aBuffer
Pointer to the buffer to dump.

→ aBufferLen
Length of area to dump, in bytes.

Returns None.

Comments HALTrace.c

HALTraceOutputT Function
Outputs a line of text trace to a trace receiver/display system,
normally the Serial Reporter with Palm Reporter. This function is
analogous to the standard C function printf.

Tracing
HALTraceOutputVT

DAL Reference 15
PalmSource Confidential

Prototype void HALTraceOutputT(unsigned short aErrModule,
const char *aFormatString, ...)

Parameters → aErrModule
An error class, which must be unique among all modules that
use traces.

→ aFormatString
Format string for arglist.

. . .Variable-length argument list to trace.

Returns None.

Comments HALTrace.c

HALTraceOutputTL is identical to this function, except that it adds
a carriage return at the end of the trace.

HALTraceOutputVT Function
Outputs a line of text trace to a trace receiver/display system,
normally the Serial Reporter with Palm Reporter. This function is
analogous to the standard C function vprintf.

Prototype void HALTraceOutputVT(unsigned short aErrModule,
const char *aFormatString, const void
*arglist)

Parameters → aErrModule
An error class, which must be unique among all modules that
use traces.

→ aFormatString
Format string for arglist.

→ argList
Argument list to trace.

Returns None.

Comments HALTrace.c

HALTraceOutputVTL is identical to this function, except that it
adds a carriage return at the end of the trace.

Tracing
Trace Macros

16 DAL Reference
PalmSource Confidential

Trace Macros
The functions described in the preceding section have a one-to-one
correspondence with a set of similarly-named macros. You will find
the macros called throughout the code, rather than the functions.
The following table lists the syntax for each macro followed by the
function call to which the preprocessor expands it. The ellipses (. . .)
represent where you would specify a variable-length argument list,
such as the ones you pass to the standard C library function
printf().

You will find the definition of these macros in HALTrace.h:
#define TraceOutput(X) HALTraceOutput##X

It uses the preprocessor operator ## to concatenate the replacement
text with the argument.

Table 3.1 Syntax of Trace Macros and Their Expansions

TraceOutput(T (errorClass, “formatString”, ...))
HALTraceOutputT(errorClass, “formatString”, ...)

TraceOutput(TL (errorClass, “formatString”, ...))

HALTraceOutputTL(errorClass, “formatString”, ...)

TraceOutput(B (errorClass, bufferPtr, bufferLength))
HALTraceOutputB(errorClass, bufferPtr, bufferLength)

TraceOutput(VT (errorClass, “formatString”,argListPtr))
HALTraceOutputVT (errorClass, “formatString”, argListPtr)

TraceOutput(VTL (errorClass,“formatString”,argListPtr))
HALTraceOutputVTL (errorClass, “formatString”, argListPtr)

DAL Reference 17
PalmSource Confidential

4
Digitizer Support
This chapter describes the API functions of the HAL that deal with
the digitizer. They are described in alphabetical sequence.

The silkscreen region of the display typically varies from device to
device. Consequently, the HAL must provide a mechanism for
determining the characteristics of this region. In addition, this
mechanism must allow for patching the information so that
different silkscreen regions can also be associated with a single
device. An example of the latter is the Japanese version of the
Palm V.

The DAL implementations must enqueue and return a pen down
event to Palm OS when the pen is detected to be down on the
digitizer. After the pen is first down, pen down events must be
enqueued every (1/PEN_SAMPLING_RATE) second with new valid
raw pen coordinates, until the pen is detected to be up. Upon pen
up, a pen up event must be enquequed and returned to Palm OS
with coordinates of (-1, -1).

The Palm OS provides the UI for collecting the calibration
information; however, the specific calibration algorithm and result
storage is platform dependent.

For more information about the Pen Manager, see the Palm OS
Programmer’s Companion and the Palm OS Programmer’s API
Reference.

Digit izer Support
Digitizer Support Data Structures

18 DAL Reference
PalmSource Confidential

Digitizer Support Data Structures

Coord
Found in: PalmTypes.h

The Coord data type identifies one coordinate of a point. The
PointType data type uses the Coord data type twice to identify the
x- and y- coordinates of a point on the screen.

typedef Int16 Coord;

PointType
Found in: CmnRecTypes.h

The PointType data type uses x- and y-coordinates to identify a
point on a screen or window. It is used extensively by digitizer
functions, including HALPenCalibrate, and
HALPenScreenToRaw.

typedef struct PointType {
Coord x;
Coord y;
} PointType;

Digitizer Support Functions

HALPenCalibrate Function
Purpose Sets calibration of the pen, from top left and bottom right points for

screen and digitizer.

Prototype Err HALPenCalibrate (PointType *DigTopLeftP,
PointType *DigBotRightP, PointType
*ScrTopLeftP, PointType *ScrBotRightP)

Parameters → DigTopLeftP
Digitizer output from top-left coordinate.

Digit izer Support
HALPenRawToScreen

DAL Reference 19
PalmSource Confidential

→ DigBotRightP
Digitizer output from bottom-right coordinate.

→ ScrTopLeftP
Screen coordinate near top-left corner.

→ ScrBotRightP
Screen coordinate near bottom-right corner.

Returns 0
If no error.

Comments LBC_PenMgr.c

Replaces PenCalibrate() function from the HAL API for Palm
OS 4.0.

The DAL needs to make sure that the necessary parameters for
transforming between raw digitizer coordinates and screen
coordinates have been calculated and stored. How the DAL
accomplishes this task is platform dependent.

See Also HALPenResetCalibration

HALPenRawToScreen Function
Purpose This function converts a raw pen coordinate into screen coordinates.

Prototype Err HALPenRawToScreen(PointType *ioPoint)

Parameters ↔ ioPoint
Coordinate to be converted.

Returns 0
If no error.

Comments LBC_PenMgr.c

Replaces PenRawToScreen() function from the HAL API for Palm
OS 4.0.

Digit izer Support
HALPenResetCalibration

20 DAL Reference
PalmSource Confidential

This function is called by EvtGetSysEvent(),
EvtDequeueStrokeInfo(), EvtDequeuePenPoint(), and
EvtGetPen() before returning pen coordinates to the application.

See Also
HALPenScreenToRaw
EvtGetSysEvent
EvtDequeuePenStrokeInfo
EvtDequeuePenPoint
EvtGetPen

HALPenResetCalibration Function
Purpose This function resets the calibration in preparation for recalibrating

the pen again.

WARNING! The digitizer is no longer calibrated after calling this
routine and must be calibrated again!

Prototype Err HALPenResetCalibration (void)

Parameters None.

Returns 0
No error; 0 is always returned.

Comments LBC_PenMgr.c

Replaces PenResetCalibration() function from the HAL API
for Palm OS 4.0.

This function is called by the Preferences application, before
capturing points, when calibrating the digitizer. It must be called
before points are captured from the digitizer for calibration.

See Also HALPenCalibrate

HALPenScreenToRaw Function
Purpose This function converts a screen coordinate into a raw digitizer

coordinate.

Prototype Err PenScreenToRaw(PointType *ioPoint)

Digit izer Support
HALPenScreenToRaw

DAL Reference 21
PalmSource Confidential

Parameters ↔ ioPoint
Coordinate to be converted.

Returns 0
If no error.

Comments Replaces PenScreenToRaw() function from the HAL API for Palm
OS 4.0.

This function is called by the SerialLink Manager when processing a
remote pen event from the host with PrvProcessRemoteEvt(). It
must call this routine in order to modify the point as if it had come
from the digitizer, because the SysEvtMgr() always calls
PenRawToScreen() on enqueued points.

See Also HALPenRawToScreen
PrvProcessRemoteEvt
SysEvtMgr

Digit izer Support
HALPenScreenToRaw

22 DAL Reference
PalmSource Confidential

DAL Reference 23
PalmSource Confidential

5
Display
This chapter describes functions that are part of the display driver.
They are described in alphabetical sequence. For details, see
“Writing a Display Driver” in Display Driver Design Guide.

Display Data Constants

Display Attribute Constants
The following constants deal with display attributes, such as
amount of VRAM, bit depth, brightness level, etc. Used by
HALDisplayGetAttributes and HALDisplaySetAttributes,
these constants are defined in the include file HALDisplay.h.

In the table, the Get/Set column indicates whether each constant
can be used only to get display attributes (Get) or to both get and
set display attributes (Both).

Display
Display Data Constants

24 DAL Reference
PalmSource Confidential

Constant Get/
Set

Description Value Returned by
Get or Set

kHALDispAddr Both Base address for video memory.
Screen Manager uses this base
for determining address of the
destination bitmap. Always
returns a memory address,
whether video memory is
physically located on VRAM or
is allocated from the dynamic
heap.

Valid memory address.

kHALDispAllDepth Get A mask indicating all supported
bit depths.

If a depth is supported,
the bit at depth-1 is set.

For example: a display
driver that supports 2-
bit grayscale and
monochrome would
have a mask value of
0x03. A driver that
supports 8-bit color as
well as 4,2, and 1-bit
grayscale would have a
mask value of 0xAB.

kHALDispAllowDirectAc
cess

Get A Boolean that indicates if direct
access to video memory is
allowed.

Values are 0,1
(disallowed/allowed)

kHALDispBacklight Both Boolean for backlight status. Values are 0,1 (off/on)

kHALDispBootDepth Get Bit depth used when system is
being unitized. Typically set to
lowest bit depth supported: 1 for
monochrome/grayscale or 8 for
color.

Unsigned integer
representing number
of bits.

Display
Display Data Constants

DAL Reference 25
PalmSource Confidential

kHALDispBufferMask Get Mask for determining required
display address alignment. Set
this value only if video memory
is allocated from the system
heap and the allocated block
must be aligned to a certain
address boundary.

Bitmask.

kHALDispBrightness Both A value representing the current
brightness level

0 (min) - 255 (max)

kHALDispColor Get A Boolean showing whether the
controller and the display can
show color.

True if both controller
AND display support
color.
False if both
controller and display
support only gray
scale.

kHALDispContrast Both A value representing the current
contrast level.

0 (min) - 255 (max)

kHALDispDbgIndicator Get A flag that shows current state
of debug cursor. Can be used by
HAL for debugging. For
instance, the indicator could be a
blinking cursor to denote boot
progress at various times.

True if debug cursor is
displayed, indicating
that execution has been
halted, awaiting input
from debugger.

kHALDispDensity Get Returns the screen density. Screen density, using
DensityType enum
constants defined in
CmnBitmapTypes.h.

Constant Get/
Set

Description Value Returned by
Get or Set

Display
Display Data Constants

26 DAL Reference
PalmSource Confidential

kHALDispDgtScale Get Returns density, as a fixed point
value, of digitizer used for pen
samples in relation to density of
screen. Value is 16-bit fixed-
point.

FixedFromInteger:

if digitizer accurate
enough to return
coordinates that match
screen density.

kFixedOneHalf:

if display is double
density but digitizer
can accurately return
only single density pen
samples

kHALDisDgtStdScale Get Scaling factor for converting
digitizer pen coordinates to
standard coordinates. Standard
coordinates are single density
coordinates. Value is 16-bit fixed
point.

kFixedOneHalf:

if digitizer generates
double-density pen
samples. Standard
coordinates are single
density coordinates.

FixedFromInteger:

if digitizer returns
single density pen
samples.

kHALDispDepth Both Current bit depth being used. Unsigned integer
representing number
of bits.

kHALDispEndAddr Get Address of last byte of video
memory. No longer used by OS.

Unsigned integer
representing number
of bits.

kHALDispHeight Get Physical height of display in
pixels.

In pixels.

Constant Get/
Set

Description Value Returned by
Get or Set

Display
Display Data Constants

DAL Reference 27
PalmSource Confidential

kHALDispInputAreaBmp Both Pointer to a BitmapType that
contains the regular input area
bitmap if it is not printed on the
display. The display driver must
support both get and set of this
bitmap if the device supports a
dynamic input area.

Pointer

kHALDispInputAreaLoc Both A RectangleType that
specifies the bounds of the input
area. Define this attribute only if
the input area is not printed on
the display.

If this attribute is defined, Palm
OS® draws the input area
bitmap to the specified location
at boot time and then sends the
bitmap pointer to the display
driver using the
kHALDispInputAreaBmp
attribute. Therefore, you must
support setting the
kHALDisplayInputAreaBmp
attribute in
HALDisplaySetAttributes(
) if you define an input area
location.

Bounds rectangle.

Constant Get/
Set

Description Value Returned by
Get or Set

Display
Display Data Constants

28 DAL Reference
PalmSource Confidential

kHALDispInputAreaSele
ctedBmp

Both Pointer to a BitmapType that
contains the selected input area
bitmap. This bitmap looks
similar to the regular bitmap
(kHALDispInputAreaBmp)
except that each button is drawn
in its inverted (selected) state.
HalRedrawInputArea() uses
this bitmap when its selected
parameter is true. The display
driver must support both get
and set of this bitmap if the
device supports a dynamic
input area.

Pointer

kHALDispMaxDepth Get Maximum bit depths.
Supported LCD depths bit mask
(color depth or gray levels
depending on
kHALDisplayColor value).
Output value is a bitfield of
supported screen depths.

Each bit in the returned
UInt16 value indicates
support (1) or not (0)
for each display depth.
To decode an
individual bit in the bit
map, use the following:

bit position =
bit depth - 1

Some examples:

Support for bit depths
of 2 and 1 is indicated
by 0x03

Support for bit depths
of 4, 2, and 1 is
indicated by 0x0B.

Support for bit depths
of 24, 8, 4, and 2 is
indicated by 0x80008A.

kHALDispMemAccessOK Get Boolean that indicates if
drawing to screen when the
controller is disabled causes a
bus error.

True if drawing does
not cause bus error.
False if drawing
causes error.

Constant Get/
Set

Description Value Returned by
Get or Set

Display
Display Data Constants

DAL Reference 29
PalmSource Confidential

kHALDispPixelFormat Get Pixel format of screen.

Returns one:

a) pixelFormat565LE

b) pixelFormatIndexed,

c) pixelFormatIndexedLE

Constants are for these
bit depths;

a) 16-bit

b) 8-bit

c) 1,2,or 4-bit

kHALDispName Get Name of display driver Get a 32-character
string for controller
and hardware.

kHALDispResolutionX Get Not currently used.

kHALDispResolutionY Get Not currently used.

kHALDispRev Get Controller hardware’s revision
number.

Unsigned integer.

kHALDispRowBytes Get Number of bytes it takes store a
single row of pixels.

Equals:
width*bitdepth / 8

kHALDispType Get 4-character constant specifying
the controller/display
combination

4 characters

kHALDispVers Get Display driver’s version number Unsigned integer.

kHALDispVRAMAddr Get Base address for video memory
physically located on VRAM.

See kHALDispAddr

Valid memory address.
If video memory is
allocated from the
dynamic heap, this
value is 0.

kHALDispVRAMSize Get Size in bytes of video memory In bytes.
Is 0 if video memory is
allocated from the
dynamic heap.

kHALDispWidth Get Width of display in pixels In pixels.

Constant Get/
Set

Description Value Returned by
Get or Set

Display
Display Data Structures

30 DAL Reference
PalmSource Confidential

Display Data Structures

RGBColorType
Found in: CmnBitmapTypes.h

The RGBColorType data type indicates the color of a pixel, using
the red-green-blue system. This structure specifies the amount of
red, green, and blue (on a scale of 0-255) that combine to make this
color. The index field is the color, or closest matching color, in the
current CLUT; otherwise, it is unused. The color table in question is
table of non-sequential colors, which contains a maximum of 256.
The color table is represented by the ColorTableType, which

kHALDispXferBufStatic Get Boolean indicating if
intermediate buffer used by
display transfer function is
statically allocated.

Used only if licensee is using an
intermediate buffer.

True if statically
allocated. False if
allocated from the
dynamic heap.

kHALDispXferDepths Get Bit depths at which the display
transfer function is used.

Bitfield returned that represents
zero or more depths for which
the display transfer function
will be called. Note that some
DAL implementations might
call transfer function only for
higher bit depths.

Used only if licensee is using an
intermediate buffer.

Each bit in the returned
UInt16 value indicates
support (1) or not (0)
for each display depth.
To decode an
individual bit in the
bitfield, use the
following:

bit position =
bit depth - 1.

kHALDispXferFunc Get Display transfer function used
to translate between what blitter
draws and what driver expects.

Used only if licensee is using an
intermediate buffer.

Function pointer.

Constant Get/
Set

Description Value Returned by
Get or Set

Display
HALDisplayDrawBootScreen

DAL Reference 31
PalmSource Confidential

contains an array of RGBColorType structures.
See“ColorTableType” on page 109 for more information about the
ColorTableType.

typedef struct RGBColorType {
UInt8 index;
UInt8 r;
UInt8 g;
UInt8 b;
} RGBColorType;

Display Functions

HALDisplayDrawBootScreen Function
Purpose This function is used by the ROM startup code to put bitmaps on

the screen. It displays a given bitmap at boot time, before any high-
level initialization of the user interface.

Prototype Err HALDisplayDrawBootScreen(UInt16 x, UInt16 y,
void *bitmapParamP)

Parameters → x
x-coordinate of top-left corner for bitmap. It must be a
multiple of 8.

→ y
y-coordinate of top-left corner for bitmap.

→ bitmapParamP
Pointer to bitmap structure to draw (BitmapType).

Returns 0
If no error.

Comments CTLDisplay.c

Replaces HwrDisplayDrawBootScreen() function from the
HAL API for Palm OS 4.0.

HALDisplayDrawBootScreen() is called from SysLaunch
using the splash screen bitmap specified when building the ROM. It
can potentially be called multiple times, and with different bitmaps.

Display
HALDisplayGetAttributes

32 DAL Reference
PalmSource Confidential

For example, it's usually called only once for the initial display, but
it may be called again if the user held the page down key during the
early boot process, to draw the confirmation screen, and again after
the user confirms a hard reset is required in order to “restore” the
splash screen while the hard reset is taking place. All this occurs
before the hardware is “identified” by calling
HwrIdentifyFeatures() and HwrModelSpecificInit().

Please note that the x and y arguments passed to this function could
also be of the signed data type Coord.

HALDisplayGetAttributes Function
Purpose This function returns the various attributes of the LCD controlling

hardware.

Prototype Err HALDisplayGetAttributes(UInt16 iAttribute,
UInt32 *oValue)

Parameters → iAttribute
Constant representing the attribute you wish to retrieve.

← oValue
A pointer to the attribute’s value.

See “Display Attribute Constants” on page 23 for more information
about display attributes and their values.

Returns 0
If no error.

Comments CTLDisplay.c

Replaces HwrDisplayAttributes() function from the HAL API
for Palm OS 4.0.

Display
HALDisplayGetPalette

DAL Reference 33
PalmSource Confidential

HALDisplayGetPalette Function
Purpose This function gets the contents of the Color Lookup Table (CLUT),

or palette, for the LCD controller hardware, which is stored in the
HAL. Contents are returned in an RGB table.

Prototype Err HALDisplayGetPalette(Int16 iStartIndex, UInt16
iNumEntries, RGBColorType *oTable)

Parameters → iStartIndex
If between 0 and 255, iStartIndex is the index of a CLUT
entry. The first entry in iTable gets the value of that CLUT
entry. The iTable values then get CLUT values sequentially.
That is: CLUT[iStartIndex+n] sets the value of oTable[n], for
n from 0 to iNumEntries-1.

Note that the index field of the oTable entries is set to the
index of the CLUT entry.

→ iNumEntries
Number of entries in the table.

← oTable
An array of RGBColorType structures. Size of array is equal
to iNumEntries.
If iStartIndex=-1, the index field of the RBGColorType
structures acts as an in- parameter. Otherwise, the index
field is an out-parameter.

See “RGBColorType” on page 30 for more information about the
RGBColorType data type.

Returns 0
If no error. Otherwise, returns kHALDispErrOutOfRange,
if oTable contains an entry whose index exceeds the
maximum index for the current screen depth.

Comments CTLDisplay.c

Replaces HwrDisplayPalette() function from the HAL API for
Palm OS 4.0.

See Also HALDisplaySetPalette

Display
HALDisplaySetAttributes

34 DAL Reference
PalmSource Confidential

HALDisplaySetAttributes Function
Purpose This function returns the various attributes of the LCD controlling

hardware.

Prototype Err HALDisplayGetAttributes(UInt16 iAttribute,
UInt32 iValue)

Parameters → iAttribute
The attribute to set. Only the attributes marked as Both in
the table are allowed to be set.

→ iValue
Value to assign.

See “Display Attribute Constants” on page 23 for more information
about display attributes and their values. In that table, only the
attributes marked as Both are allowed to be set.

Returns 0
If no error.

Comments CTLDisplay.c

Replaces HwrDisplayAttributes() function from the HAL API
for Palm OS 4.0.

HALDisplaySetPalette Function
Purpose This function sets the contents of the Color Lookup Table (CLUT), or

palette, for the LCD controller hardware.

Prototype Err HALDisplaySetPalette(Int16 iStartIndex, UInt16
iNumEntries, RGBColorType *iTable)

Parameters → iStartIndex
If between 0 and 255, iStartIndex is the index of a CLUT
entry. The first entry in iTable sets that CLUT entry. The
iTable values then set CLUT values sequentially. That is:
iTable[n] sets the value of CLUT[iStartIndex+n] ,
for n from 0 to iNumEntries-1.

If iStartIndex equals -1, then the index field of each
iTable entry is used as an index into the CLUT. The CLUT
entry receives the value of the iTable entry. Starts with the

Display
HALDisplayDoze

DAL Reference 35
PalmSource Confidential

first entry in iTable and proceeds sequentially through the
iTable entries.

→ iNumEntries
Number of entries to set.

→ iTable
An array of RGBColorType structures. Size of array must
equal iNumEntries.

See “RGBColorType” on page 30 for more information about the
RGBColorType data type.

Returns 0
If no error. Otherwise, returns kHALDispErrOutOfRange,
if iTable contains an entry whose index exceeds the
maximum index for the current screen depth.

Comments CTLDisplay.c

Replaces HwrDisplayPalette() function from the HAL API for
Palm OS 4.0.

See Also HALDisplayGetAttributes

HALDisplayDoze Function
Purpose This function handles the LCD when the device is being put into

doze mode, rather than into full sleep mode. In doze mode, the
processor is stopped, but the LCD still displays the last view of the
user interface and refreshes the screen. This is a power-saving
mode.

Prototype Err HALDisplayDoze(Boolean doze)

Parameters → doze
True if device is in wake mode and you want to put it in
doze mode.
False if device is in sleep mode and you want to wake up
the LCD controller without displaying anything on screen.
This is a special situation. See Comments below.

Returns 0
If no error.

Comments CTLDisplay.c

Display
HALDisplayLock

36 DAL Reference
PalmSource Confidential

Called by the auto-lock alarm in System Manager

A special situation arises when the following conditions exist:

• the doze parameter is false.

• the kHALDispMemAccessOK display attribute is false. (See
“Display Attribute Constants” on page 23.)

• the device is in sleep mode.

• the auto-lock alarm has been triggered by the passage of the
specified time period.

Before locking the device, the alarm handler notifies Palm OS to
process events such as updating the current time and the battery
gauge. Both activities draw to the screen, which causes a small
difficulty: since the device is asleep, the LCD controller is disabled.
And since the kHALDispMemAccessOK attribute is false, this
attempt to draw to the screen causes a bus error.

To solve this situation, the alarm handler calls HALDisplayDoze()
with doze set to false. This wakes the LCD controller but not the
LCD itself. In this way, the Palm OS can draw to the video memory
without causing a crash.

You may wonder why the alarm handler doesn’t just call
HALDisplayWake(). While this would work, it would also cause
the LCD to flash on and display. Since the device was asleep when
the auto-lock alarm was triggered, having the screen turn on is not
desirable behavior.

HALDisplayLock Function
Purpose This function reduces screen flicker and ensures smooth screen

updates.This function locks the screen, returning the address of an
offscreen buffer to which the blitter writes.

Prototype void* HALDisplayLock(ScrGlobalsType* scrGlobalsP,
Boolean* oAlreadyLocked, UInt32 size)

Parameters → scrGlobalsP
Pointer to screen manager globals.

← oAlreadyLocked
Returns true if the screen is already locked.

Display
HALDisplaySleep

DAL Reference 37
PalmSource Confidential

→ size
Size in bytes of the offscreen screen buffer.

Returns Returns a pointer to the new offscreen buffer, if allocated. Or returns
NULL if the offscreen buffer is not allocated.

Comments CTLDisplay.c

This function “locks” the display screen of the Palm OS device by
moving the existing frame buffer to a different address and then
returning the address of a new, offscreen buffer. The driver
continues to display the moved buffer while the blitter writes to the
offscreen buffer. When the screen is “unlocked,” the contents of the
offscreen buffer are reflected onscreen.

To support screen locking, your Palm OS device must have enough
VRAM for two frame buffers. If screen locking is not supported
HALDisplayLock() should return NULL.

The controller supported by the sample DAL creates an offscreen
buffer in VRAM.

The screen lock count represents the number of times that
HALDisplayLock() has been called. The screen must be unlocked
as many times as it was locked in order to actually update the
device display screen.

When an application locks the screen, the window manager calls the
screen manager which calls the display driver: WinScreenLock()
calls HALScreenLock(), which calls HALDisplayLock().

HALDisplaySleep Function
Purpose This function turns off the LCD. Called during the process of

putting the device to sleep, this function handles the display
appropriately.

Prototype Err HALDisplaySleep(Boolean untilReset, Boolean
emergency)

Parameters → untilReset
True indicates that once the device has been put to sleep, it
will remain so until a hard reset. Usually, this parameter is
true only when emergency parameter is true, too.

Display
HALDisplayUnlock

38 DAL Reference
PalmSource Confidential

→ emergency
True indicates that the device is being shut down faster than
normal, usually in response to a low battery interrupt. The
emergency shutdown happens immediately to save user data
that is in the storage heap. Normal cleanup is not performed.

Returns 0
If no error.

Comments CTLDisplay.c

This function must handle the case of an emergency shutdown and
the case of a sleep state that can only be wakened by hard reset. For
normal shutdowns and sleep states, the function is called with
false for both parameters.

This function is called by the HAL, not by the Palm OS. See
LBC_HALPower.c

HALDisplayUnlock Function
Purpose This function works in concert with HALDisplayLock() to reduce

screen flicker and ensure smooth screen updates. It “unlocks” the
display screen by replacing the buffer that the driver is currently
displaying with the offscreen “virtual” buffer.

Prototype Err HALDisplayUnlock (ScrGlobalsType* scrGlobalsP)

Parameters → scrGlobalsP
Pointer to screen manager globals.

Returns 0
If no error.
Returns HALDispErrUnlockErr if the current and new
screen addresses are the same.

Comments CTLDisplay.c

This function sets the base address of the driver’s current buffer to
the base address of the offscreen frame buffer that was established
by an earlier call to HALDisplayLock(). Consequently, the
contents of the offscreen buffer are displayed onscreen.

If the DAL uses the system heap to allocate its screen buffer, it gets
deallocated here. The controller supported by the sample DAL
allocates its screen buffer in VRAM.

Display
HALDisplayWake

DAL Reference 39
PalmSource Confidential

When an application unlocks the screen, the window manager calls
the screen manager which calls the display driver:
WinScreenUnlock() calls HALScreenUnlock(), which calls
HALDisplayUnlock().

HALDisplayWake Function
Purpose This function wakes up the LCD.

Prototype Err HALDisplayWake(void)

Parameters None.

Returns 0
If no error.

Comments CTLBoot.c

Replaces HwrDisplayWake() function from the HAL API for Palm
OS 4.0.

See Also EvtResetAutoOffTimer

Display
HALDisplayWake

40 DAL Reference
PalmSource Confidential

DAL Reference 41
PalmSource Confidential

6
Initialization
This chapter describes the API functions of the HAL that deal with
the initialization process. They are described in alphabetical
sequence. Some of the routines deal with general initialization.
Others deal with the virtual memory map.

Setting up and initializing the virtual memory map is one of the
primary goals of the initialization process. For details about the
memory map and how it gets set up during the boot process, see
“Memory Management” in DAL Customization Guide. You will also
find information about memory locations of actual SB-relative
globals and of low memory globals.

For details on the order in which different pieces of hardware are
inialialized, see “Boot Sequence” in DAL Customization Guide.

HwrPostDebugInit Function
Purpose This routine is called after the debugger is installed. It installs the

HwrLowBatteryHandler() to prevent race conditions.

Prototype void HwrPostDebugInit(void)

Parameters None.

Returns None.

Comments LBC_ROMHiHardware.c

This function is called by InitStage2().

Install the HwrLowBatteryHandler in case battery interrupts are
handled this early, as it can prevent race conditions.

See Also InitStage2

Init ial ization
HwrPreDebugInit

42 DAL Reference
PalmSource Confidential

HwrPreDebugInit Function
Purpose This function performs necessary initialization of hardware before

initializing the debugger.

Prototype void HwrPreDebugInit(UInt32 cardHeaderAddr)

Parameters cardHeaderAddrAddress of card header structure.

Returns None.

Comments LBC_ROMHardware.c

This function is called by InitStage1() in ROMBoot.c.

See Also HALDisplayDrawBootScreen
InitStage1

HwrPreRAMInit Function
Purpose This function performs necessary initialization of hardware before

RAM can be used for the dynamic heap and the storage heap. It sets
up the final virtual memory map before the kernel starts. It
initializes certain hardware devices—specifically, those that have
not already been initialized by the Reset_A routine and those that
will not be initialized by driver-specific initialization function calls
later in the boot sequence.

Prototype void HwrPreRAMInit(void)

Parameters None.

Returns None.

Comments LBC_ROMHardware.c

This function is called by the C_Entry point in ROMBoot.c.
Extremely important initialization of the memory regions takes
place in this function. However, the HwrPreRAMInit assumes that
Reset_A code has already performed a preliminary initialization of
the RAM. Examine in-line comments in Reset_A.s and
LBC_ROMHardware.c for details about what happens at each step
of these two initialization stages.

See Also Reset_A

Initialization
InitStage2

DAL Reference 43
PalmSource Confidential

InitStage1 Function
Purpose Main initialization code for booting the Palm OS device. All basic

setup starts here. This includes locating the big ROM, initializing
system and hardware globals, locating the system shared library,
initializing the debugger, and initializing the kernel. It can also enter
the small ROM debugger.

Prototype void InitStage1(UInt16 hardResetOrDebug,
UInt32 cardHeaderAddr)

Parameters → hardResetOrDebug flag
-1 = hard reset requested
1 = drop into debugger (for flashing)
0 = boot normally

→ cardHeaderAddr
Address of CardHeader structure.

Returns None.

Comments ROMBoot.c

The CardHeaderType is defined in MemoryPrv.h.

InitStage2 Function
Purpose Secondary initialization code for Palm OS—which initializes the

BigROM. This routine calls the post debugger initialization
function. Then it calls functions to initialize interrupts, digitizer/
pen subsystem, key subsystem, battery, and time manager.

Prototype void InitStage2(Boolean hardReset)

Parameters hardReset
True, if the Palm OS device is undergoing a hard reset. All
storage heaps will be wiped, in addition to the dynamic
heap.
False, if the Palm OS device is undergoing a soft reset.
Storage heaps will be preserved, while the dynamic heap
alone is wiped.

Returns None

Comments ROMBootStage2.c

Calls the DAL API function HwrPostDebugInit().

Init ial ization
Reset_A

44 DAL Reference
PalmSource Confidential

Reset_A Function
Purpose This routine is written in ARM assembly language. It is the very first

code executed upon the first device boot-up, after a hard reset, or
after a soft reset. It performs all the initialization required before
branching to C_Entry in ROMBoot.c, which is the main C-language
system code. The Reset_A code defines the ENTRY point,
initializes the stack pointers for each mode, copies Read-Only and
Read/Write data from ROM to RAM, and zero-initializes the ZI
data areas used by the C code. It also initializes the DRAM
configuration/control registers to permit the MMU translation
tables to be loaded into RAM. The first initialization of the virtual
memory map also takes place in Reset_A. The HwrPreRAMInit
function, which will refine the virtual memory map, assumes that
Reset_A has already done this preliminary work.

The Reset_A code is defined in the Reset_A.s file.

If you are modifying this routine, see an important note in the
Comments section of HwrPreRAMInit.

See Also HwrPreRAMInit

DAL Reference 45
PalmSource Confidential

7
Interrupt Handling
This chapter describes the API functions of the HAL that deal with
the interrupts. They are described in alphabetical sequence. These
routines deal with hardware interrupts. If you wish to learn
specifically about software interrupts, however, see ““Writing a
Software Interrupt Handler” in DAL Customization Guide.

Interrupt Handling Data Structures

InterruptAllStatus
The InterruptAllStatus data type indicates whether the
interrupts as a group are disabled or enabled. The constants defined
in this enumeration are used by HALInterruptAllSetStatus. The
definition for InterruptAllStatus is found in
HALInterrupts.h.

enum InterruptAllStatusTag {
InterruptAllStatusDisabled,
InterruptAllStatusEnabled,

};

typedef Enum16 InterruptAllStatus;

IRQState
The IRQState data type is used to indicate the state of a given
interrupt: whether it is disabled or enabled. The constants defined
in this enumerations are used by HALInterruptSetState. The
definition for IRQState is found in LBC_Interrupt.h.

typedef enum {
IRQDisabled,
IRQEnabled,

}IRQState;

Interrupt Handling
Interrupt Functions

46 DAL Reference
PalmSource Confidential

Interrupt Functions

HALInterruptAllSetStatus Function
Purpose Enables or disables all interrupts at the same time.

Prototype InterruptAllStatus
HALInterruptAllSetStatus(InterruptAllStatus
newStatus)

Parameters → newStatus
State of interrupts considered as a group. This parameter
indicates the state to set.

Returns The old state (all interrupts enabled or disabled).

Comments LBC_Interrupts.c

HALInterruptGetHandler Function
Purpose Returns the handler and the data it uses for the given interrupt

number.

Prototype void HALInterruptGetHandler(UInt32 irqNum,
void **handlerP, void **handlerArgP)

Parameters → irqNum
Interrupt number

← handlerP
Returns pointer to handler

← handlerArgP
Returns pointer to handler data

Returns 0.
If no error.

Comments LBC_Interrupts.c

This routine replaces the direct assignment of interrupt vectors in
for Palm OS 4.0, which was the method used on Motorola 68K
processors.

Interrupt Handling
HwrInterruptsInit

DAL Reference 47
PalmSource Confidential

HALInterruptSetHandler Function
Purpose Assigns an interrupt handler to a given interrupt.

Prototype void HALInterruptSetHandler(UInt32 irqNum,
void *handlerP, void *handlerArgP)

Parameters → irqNum
Interrupt number

→ handlerP
Pointer to handler

→ handlerArgP
Pointer to handler data

Returns None.

Comments LBC_Interrupts.c

This routines replaces the direct assignment of interrupt vectors in
for Palm OS 4.0, which runs on Motorola 68K processors.

HALInterruptSetState Function
Purpose Enables or disables an interrupt line.

Prototype IRQState HALInterruptSetState(UInt32 irqNum,
IRQState newState)

Parameters → irqNum
Interrupt number

→ newState
State to set

Returns The old interrupt line state.

Comments LBC_Interrupts.c

HwrInterruptsInit Function
Purpose This routine is called from InitStage2. It initializes the system

interrupts and installs the system timer procedure.

Prototype void HwrInterruptsInit(void);

Parameters None.

Interrupt Handling
HwrInterruptsInit

48 DAL Reference
PalmSource Confidential

Returns None.

Comments LBC_Interrupts.c

DAL Reference 49
PalmSource Confidential

8
Keyboard Support
This chapter describes the API functions of the HAL that deal with
the keyboard. They are described in alphabetical sequence.

The HAL implementation needs to enqueue a key-down event on
the first key-down. After the key is first down, key-repeat actions
should enqueue a repeating event at a rate set by
HALKeySetRates, until the key is detected to be up. Once the key
is up, the implementation needs to enqueue a key-up event.

For more information about the Key Manager, see the Palm OS
Programmer’s Companion and the Palm OS Programmer’s API
Reference.

For information about key events and how they are handled, see
“Hardware Events” on page 61.

Keyboard Support Masks

Key Mask
HALKeySetMask and HALKeyGetState use a UInt32 mask. Each
bit in the mask corresponds to a particular hard key or hardware
feature (such as the antenna) on the device. The mask is defined in
the include files HALKey.h and CmnKeyTypes.h

Bit Value

0 Power Key

1 Page-up

2 Page-down

3 App #1

4 App #2

Keyboard Support
Keyboard Support Data Structures

50 DAL Reference
PalmSource Confidential

Keyboard Support Data Structures
None applicable.

Keyboard Support Functions

HALKeyGetRates Function
Purpose Retrieve current key repeat rate.

Prototype Err HALKeyGetRates(UInt16* oInitDelay, UInt16*
oPeriod, Boolean* oQueueAhead)

Parameters ← oInitDelay
The initial delay in milliseconds for an auto-repeat event.

← oPeriod
The auto-repeat rate specified as the period in milliseconds.

← oQueueAhead
If true, auto-repeating keeps queuing up key events if the
queue has keys in it. If false, auto-repeat does not enqueue
keys unless the queue is already empty.

Returns 0
If no error.

Comments LBC_KeyMgr.c

If you pass in NULL for any of the above parameters, that
parameter will not return a value.

5 App #3

6 App #4

7 Cradle

8 Antenna

9 Contrast

Bit Value

Keyboard Support
HALKeyResetDoubleTap

DAL Reference 51
PalmSource Confidential

Replaces KeyRates() function from the HAL API for Palm OS 4.0.

See Also HALKeySetRates

HALKeyGetState Function
Purpose Get UInt32 with bits set for each key that is currently depressed.

Prototype UInt32 HALKeyGetState(void)

Parameters None.

See “Key Mask” on page 49 to discover what the bits in the key
mask mean.

Returns Returns the current key state.

Comments LBC_KeyMgr.c

Replaces KeyCurrentState() function from the HAL API for
Palm OS 4.0.

Some systems cannot provide current state information; so it may be
necessary for the DAL to cache the state information internally.

This API is intended for use only with the basic keys defined in
HALKey.h (i.e., power, scroll up, scroll down, and the application
keys).

See Also HALKeySetMask

HALKeyResetDoubleTap Function
Purpose Resets the double-tap counter so that the next tap can be considered

as the first one of a double.

Prototype Err HALKeyResetDoubleTap(void)

Parameters None.

Returns 0
If no error.

Comments LBC_KeyMgr.c

Replaces KeyResetDoubleTap() function from the HAL API for
Palm OS 4.0.

Keyboard Support
HALKeySetMask

52 DAL Reference
PalmSource Confidential

This function is called by SysEvtMgr() when it detects a pen event
to reset the key manager’s double-tap detection. It is called by
EvtEnqueuePenPoint().

See Also HALKeySetMask

HALKeySetMask Function
Purpose This function sets the key mask--a bitfield that specifies which

hardware keys are allowed to generate key events and which are
not. Use this to turn off key events for one or more hardware keys.

Prototype UInt32 HALKeySetMask(UInt32 keyMask)

Parameters → keyMask
The mask bitmap with bits set to 1 for active keys that must
generate key events. Bits set to 0 for masked keys that should
not generate key events.

See “Key Mask” on page 49 to discover what the bits in the key
mask mean.

Returns Returns the old mask value if called from the big ROM. Returns zero
if called from the small ROM.

Comments LBC_KeyMgr.c

Replaces KeySetMask() function from the HAL API for Palm
OS 4.0.

This API is intended for use only with the basic keys defined in
HALKey.h (i.e., power, scroll up, scroll down, and the application
keys.)

See Also HALKeyGetState

HALKeySetRates Function
Purpose Set key repeat rate.

Prototype Err HALKeySetRates(UInt16 initDelay,
UInt16 Period, Boolean queueAhead)

Parameters → initDelay
The initial delay in milliseconds for an auto-repeat event.

Keyboard Support
HALKeySetRates

DAL Reference 53
PalmSource Confidential

→ period
The auto-repeat rate specified as the period in milliseconds.

→ queueAhead
If true, auto-repeating keeps queuing up key events if the
queue has keys in it. If false, auto-repeat does not enqueue
keys unless the queue is already empty.

Returns 0
If no error.

Comments LBC_KeyMgr.c

Replaces KeyRates() function from the HAL API for Palm OS 4.0.

See Also HALKeyGetRates

Keyboard Support
HALKeySetRates

54 DAL Reference
PalmSource Confidential

DAL Reference 55
PalmSource Confidential

9
Power States
This chapter describes the API functions of the HAL that deal with
the different power states. They are described in alphabetical
sequence.

Power management of the Palm OS® is the responsibility of DAL.
The Palm OS only needs a way to set the auto-sleep time-out value,
and be notified before the device really goes to sleep.

The Palm OS operates in one of the three following states: run, doze,
and sleep. The specific implementation of the doze and sleep states
is platform dependent. For example, on existing Palm OS hardware
when all Palm OS tasks block, the DAL can enter the doze mode by
shutting down the CPU clock, but leaving the peripherals on. Any
interrupt can wake up the CPU from doze mode. On platforms
where there is less direct access to the hardware, the DAL may
provide advice to the underlying hardware layer.

If the Palm OS has enabled auto-sleep, and the DAL has direct
access to the hardware, the DAL can power off the device after a
period of inactivity. After entering the sleep state, only certain
interrupts (some hardware keys, alarms etc.) can wake up the
device. As with the doze state, the DAL can provide sleep advice to
the underlying hardware layer on systems with no direct access to
hardware.

Wake and Sleep modes are handled in the HAL, while the Doze
mode is entered by the kernel when there are no running tasks.
Documentation for Doze is therefore in the Kernel Documentation.

Power States Data Structures
None applicable.

Power States
Power States Functions

56 DAL Reference
PalmSource Confidential

Power States Functions

HALPowerGetAutoOffEvtTime Function
Purpose Gets the scheduled time at which the system will automatically go

to sleep. Time is identified in absolute terms—that is, the number of
milliseconds since the last system reset.

Prototype UInt32 HALPowerGetAutoOffEvtTime(void)

Parameters None.

Returns Returns the scheduled time in milliseconds since the last reset.

Comments LBC_HALPower.c

Absolute time refers to system time in milliseconds, as returned by
function HALTimeGetSystemTime.

HALPowerGetAutoOffSeconds Function
Purpose Gets the system’s auto-off timeout.

Prototype UInt16 HALGetAutoOffSeconds(void)

Parameters None.

Returns Returns the auto-off timeout, which can be set through
HALSetAutoOffSeconds.

Comments LBC_HALPower.c

HALPowerSetAutoOffEvtTime Function
Purpose Schedules the system to automatically go to sleep at the time

specified. Time is identified in absolute terms—that is, the number
of milliseconds since the last system reset.

Prototype Void HALPowerGetAutoOffEvtTime(UInt32 iEvtTime)

Parameters → iEvtTime
Number of milliseconds since reset.

Returns 0

Power States
HALPowerSleepReady

DAL Reference 57
PalmSource Confidential

Comments LBC_HALPower.c

Absolute time is referred to as system time in milliseconds, as returned
by function HALTimeGetSystemTime.

HALPowerSetAutoOffSeconds Function
Purpose Sets the system’s auto-off timeout.

Prototype Err HALSetAutoOffSeconds(UInt16 iSeconds)

Parameters iSeconds
Number of seconds of user inactivity that must elapse before
auto-off feature puts the device to sleep.

Returns None.

Comments LBC_HALPower.c

HALPowerSleepReady Function
Purpose Palm OS calls this function to indicate it is ready to sleep. If the DAL

decides to really put the device to sleep when this function is called,
this function will not return until the device is awakened. If the
sleep process is aborted by the DAL because of unexpected events,
returning from this function will also let the Palm OS experience a
“faked” awakened process.

Err HALPowerSleepReady(void)

Parameters None.

Returns 0
If no error.

Comments LBC_HALPower.c

Returning from this function means “awake and running” to the
Palm OS. After returning from this function, the Palm OS will
perform additional “wake-up” processing.

Power States
HALPowerSleepReady

58 DAL Reference
PalmSource Confidential

DAL Reference 59
PalmSource Confidential

10
Miscellaneous
Functions
This chapter describes the API functions of the HAL dealing with
various functions that do not fit in one of the other chapters.

Random Seed
Initializing the seed for random calculation needs access to
hardware facilities. It is the responsibility of the DAL to provide this
access.

HALRandomInitializeSeed Function
Purpose Initialize seed to be used by system or user-defined random

generators.

Prototype Err HALRandomInitializeSeed(UInt32* randomSeed)

Parameters → randomSeed
New random seed.

Returns 0
If no error.

Comments HALRandom.c

According to the type of DAL implementation, this function may
typically call hardware timers, read random pieces of memory (as in
previous Palm OS versions), or call an underlying API.

Miscellaneous Functions
Boot Functions

60 DAL Reference
PalmSource Confidential

Boot Functions

HALSetInitStage Function
This function initializes a global variable that keeps track of what
stage the Palm OS initialization process has reached. That variable is
set each time a manager is launched. It is used to find out when
threads launched by PalmOS can go on.

Prototype Err HALSetInitStage(UInt32 uiValue)

Parameters → uiValue
Milestone indicating the state of managers at tat function call
time.

Returns 0
If no error.

Comments LBC_ROMHardware.c

The valid milestones can be found in HALReset.h.

PalmOSMain Function
This function is the only one called by the DAL to initialize and start
PalmOS.

Prototype Err PalmOSMain(Boolean hardReset)

Parameters → hardReset
Boolean value that controls memory initialization. If a hard
reset is requested, storage heaps will be reformatted (i.e.,
wiped).

Returns 0
If no error.

Comments PalmOSMain.c

None.

Miscellaneous Functions
HALEventPost

DAL Reference 61
PalmSource Confidential

Hardware Events
Palm OS is an event driven system. Hardware events such as Pen
and Key events are added to the Palm OS queues using callbacks.
The following PalmOS functions will be registered respectively to
enqueue Pen and miscellaneous (including Key) events. Note that
key events are used even for things that are not related to the
keyboard; most key events are in fact virtual characters.

• ErrEvtEnqueuePenPoint(PointType* penPoint)

• ErrEvtEnqueueKey(WChar ascii, UInt16 keycode,
UInt16 modifiers)

These callbacks are registered by PalmOS at boot time (in the
SysUILaunch function) using HALEventRegisterCallback.

HALEventPost Function
Explicitly enqueques an event. Called from the Palm OS.

Prototype Err HALEventPost(HALEventIDType iEventID,
const HALEventDataType* iEventData)

Parameters → iEventID
Event of the event to be posted.

→ iEventData
Pointer to the event being enqueued.

Returns 0
If no error.

Comments LBC_HALEvent.c

The Palm OS calls this function to enqueue software-generated
events into the key queue. This function has to call Palm OS
callbacks without being re-entered. Callbacks for custom events
defined by other DAL implementers and registered with
HALEventRegisterCallback should be handled by this
function.

NOTE: Currently this function only supports posting key events.

Miscellaneous Functions
HALEventRegisterCallback

62 DAL Reference
PalmSource Confidential

HALEventRegisterCallback Function
This function is used by the Palm OS to register itself for all events,
including non-UI events.

Prototype Err HALEventRegisterCallback(HALEventIDType
iEventID, HALEventCallBackPtrType iCallBack,
HALEventCallBackPtrType *oPrvCallBack)

Parameters → iEventID
ID of the event to be registered. (See the description of
available events in HalEvent.h)

→ iCallBack
A pointer to the callback function.

← oPrvCallBack
The old callback address, if any.

Returns 0
If no error.

Comments LBC_ROMHardware.c

It is assumed that the function pointer has been processed to include
the necessary code to switch contexts between the caller and the
callback, or that the caller will handle the necessary switch.

Reset

HALReset Function
Resets and restarts the Palm OS environment.

Prototype void HALReset(Boolean hardReset)

Parameters hard Reset
True to perform a hard reset. False to perform a soft reset.

Returns None.

Comments LBC_ROMHardware.c

A hard reset initializes the storage heaps as well as the dynamic
heap. Thus, non-volatile data is lost. A soft reset merely wipes the

Miscellaneous Functions
HALGetHwrWakeUp

DAL Reference 63
PalmSource Confidential

dynamic heap (i.e., stack, globals, and dynamic allocation area),
preserving storage heaps.

Miscellaneous Functions

HALGetHwrMiscFlags Function
Returns the system hardware flags that describe available features
on the current device.

Prototype UInt16 HALGetHwrMiscFlags(void)

Parameters None.

Returns System hardware flags, as described in HwrMiscFlags.h and set
by HwrIdentifyFeatures.

Comments LBC_ROMHiHardware.c

None.

HALGetHwrMiscFlagsExt Function
Returns the extended system hardware flags that describe available
features on the current device.

Prototype UInt32 HALGetHwrMiscFlagsExt(void)

Parameters None.

Returns Extended system hardware flags, as described in
HwrMiscFlags.h.

Comments LBC_ROMHiHardware.c

None.

HALGetHwrWakeUp Function
Retrieves the system wake-up state.

Prototype UInt16 HALGetHwrWakeUp(void)

Parameters None.

Miscellaneous Functions
HALGetROMToken

64 DAL Reference
PalmSource Confidential

Returns System wake-up state flags.

Comments LBC_ROMHiHardware.c

Wake-up milestones can be found in Hardware.h

HALGetROMToken Function
This function retrieves a ROM token from the burned list of tokens.

Prototype Err HALGetROMToken(UInt32 tokenRequested,
UInt8** dataPP, UInt16* sizeP)

Parameters → tokenRequested
Address of 4-byte ROM token that you are requesting.

↔ dataPP
If in-parameter was not NULL, out-parameter is data in
ROM token. Pass in NULL, if data not needed.

↔ sizeP
If in-parameter was not NULL, out-parameter is size of data
in ROM token. Pass in NULL, if size not needed.

Returns Returns one of the following values:

errNone
Success--token found.

kHALErrorTkhTokenNotFound
Token not found.

kHALErrorTknTokenInvalid
Invalid token.

Comments HALTokens.c

HALOEMGetCompanyID Function
Returns Company ID of the HAL manufacturer.

Prototype UInt32 HALOEMGetCompanyID(void)

Parameters None.

Returns HAL maker ID.

Comments LBC_ROMHiHardware.c

Miscellaneous Functions
HALSetHwrMiscFlags

DAL Reference 65
PalmSource Confidential

HALOEMGetDeviceID Function
Returns Device ID of the device on which this HAL is running.

Prototype UInt32 HALOEMGetDeviceID(void)

Parameters None.

Returns Device ID.

Comments LBC_ROMHiHardware.c

HALOEMGetHALID Function
Returns HAL ID of this HAL.

Prototype UInt32 HALOEMGetHALID(void)

Parameters None.

Returns HAL ID.

Comments LBC_ROMHiHardware.c

HALProcessorID Function
Returns Processor ID of the platform this HAL runs on.

Prototype UInt32 HALOEMGetProcessorID(void)

Parameters None.

Returns Processor ID.

Comments CTLProcessor.c

See CmnFtrNums.h for a listing of processor values.

HALSetHwrMiscFlags Function
Allows modification of the system hardware flags.

Prototype Void HALSetHwrMiscFlags(UInt16 newValue)

Parameters → newValue
The new value of the flag word.

Returns None.

Miscellaneous Functions
HALSetHwrMiscFlags

66 DAL Reference
PalmSource Confidential

Comments LBC_ROMHiHardware.c

Flags are described in HwrMiscFlags.h

DAL Reference 67
PalmSource Confidential

11
Memory
This chapter describes the API functions of the HAL that deal with
memory initialization and protection. They are described in
alphabetical sequence. For conceptual explanations of memory, see
“Memory Management” in DAL Customization Guide.

Memory Data Structures

HALMemoryMap
The HALMemoryMap data type contains a pointer to an array of
HALMemoryRegionType structures. The definition for
HALMemoryMap is found in HALMemory.h.

typedef struct HALMemoryMapTag {
UInt8 numRegions,
const HALMemoryRegionType* regions }

HALMemoryMapType;

Field Descriptions

HALMemoryRegionType
The HALMemoryRegionType data type is used as a memory region
descriptor, storing information such as the type, base address and
size of a given memory region. The definition for
HALMemoryRegionType is found in HALMemory.h.

typedef struct HALMemoryRegionTag {

numRegions Number of memory regions.

regions Pointer to array of
HALMemoryRegionType.
Size of array is numRegions.

Memory
Memory Data Structures

68 DAL Reference
PalmSource Confidential

HALMemoryType type,
void* baseAddress,
UInt32 size,

} HALMemoryRegionType;

Field Descriptions

HALMemoryType
The HALMemoryType data type is used to indicate the kind of
memory region. The constants defined in HALMemoryTag
correspond to the four kinds of memory. The definition for
HALMemoryType is found in HALMemory.h.

enum HALMemoryTag {
kROM,
kVolatileRAM,
kNonVolatileRAM
ksmallROM

};
typedef Enum8 HALMemoryType;

Value Descriptions

type Kind of memory region. Value is
one of enum constants defined by
HALMemoryType.

baseAddress Pointer to address where the
memory region starts.

size Size of the memory region in
bytes.

kROM Big ROM.

kVolatileRAM Dynamic heap.

kNonVolatileRAM Storage heap.

ksmallROM Small ROM. Used in flash upgrade. For
description of flash upgrading, see
Building a ROM Upgrade Tool.

Memory
Memory Data Structures

DAL Reference 69
PalmSource Confidential

Example
Consider the following example from the globals initialization
portion of the Sample DAL. In HALGlobals.h, an array of memory
region structures is declared as a field of the HALGlobalsType
structure. The following code snippet shows the array and memory
map declarations:

. . .
HALMemoryRegionType HALMemoryRegions[NUM_HAL_MEMORY_REGIONS];
HALMemoryMapType HALMemoryMap;
. . .

The HALMemoryRegions array is then accessed through the
GHALMemoryRegions macro and initialized as shown in this
snippet from LBC_ROMHardware.c:

GHALMemoryRegions[0].type = kROM;
 GHALMemoryRegions[0].baseAddress = romStartAddr;// this is

//not a fixed address!
 GHALMemoryRegions[0].size = hwrBigROMSize;
 GHALMemoryRegions[1].type = kVolatileRAM;
 GHALMemoryRegions[1].baseAddress = GHwrDynamicHeapBase;
 GHALMemoryRegions[1].size = GHwrDynamicHeapSize;
 GHALMemoryRegions[2].type = kNonVolatileRAM;
 GHALMemoryRegions[2].baseAddress = hwrVirtualStorageHeapBase;
 GHALMemoryRegions[2].size = GHwrStorageHeapSize;

 // Currenty the SmallROM region is simply mapped along
 // with the BigROM. This region can be mapped to
 // any location, but this is the simplest way to do it
 // and allows the SmallROM region to be dynamically remapped
 // along with the BigROM when the widebin is loaded in
 // RAM for debugging.
 GHALMemoryRegions[3].type = kSmallROM;
 GHALMemoryRegions[3].baseAddress = romStartAddr - hwrBigROMFlashOffset;

GHALMemoryRegions[3].size = hwrBigROMFlashOffset;

GHALMemoryMap.numRegions = NUM_HAL_MEMORY_REGIONS;
GHALMemoryMap.regions = GHALMemoryRegions;

Memory
Memory Map Functions

70 DAL Reference
PalmSource Confidential

Memory Map Functions

HALMemoryGetMemoryMap Function
Purpose The Palm OS calls this function once at boot time to get a map of all

the available memory regions, including: the number of regions,
their kind, base address, and size. This routine is also called by the
flash upgrade utility to determine location of the small ROM. Once
the small ROM is located, the flash driver in the small ROM can be
run from RAM.

Prototype const HALMemoryMapType
*HALMemoryGetMemoryMap(void)

Parameters None.

Returns Returns pointer to a constant structure which defines the entire
memory map of the device (all regions). Don't modify the returned
memory since it might be in ROM!

Comments LBC_ROMHiHardware.c

Storage of the region descriptors (i.e., HALMemoryRegionType) is
maintained by the DAL, which must set the
HALMemoryRegionType values somewhere. This can be done in
HwrPreRAMInit. The values must be set before
HALMemoryGetMemoryMap() is first called.

Memory Protection Functions
Palm OS protects its data storage heaps by disabling writing to
corresponding areas of physical memory most of the time.
Modifications to the storage heap can be done only by a few system
functions that enable writing, do the modifications, and then
immediately disable writing again. Palm OS increases the protection
by disabling task switching while memory protection is off.

HAL must implement functions for disabling/enabling such
protections. Note that two levels of protection are required:
hardware memory write protection, and a mechanism to prevent
other tasks from corrupting the memory while a task has disabled
the protection. This API affects the entire storage heap.

Memory
HALMemorySetStorageAreaProtectionState

DAL Reference 71
PalmSource Confidential

HALMemoryGetStorageAreaProtectionState
Function
Returns the current protection state.

Prototype Boolean HALMemoryGetStorageAreaProtectionState(
void)

Parameters None.

Returns Returns true if memory is not protected (writing is enabled).
Returns false if memory is protected (writing is disabled).

Comments LBC_ROMHardware.c

None.

HALMemorySetStorageAreaProtectionState
Function
Enable or disable writing to the storage heaps.

Prototype Err HALMemorySetStorageAreaProtectionState(
Boolean enableWrites)

Parameters → enableWrites
If false, protects memory.

Returns None.

Comments LBC_ROMHardware.c

This function does not return the previous state of memory
protection. For that functionality, use
HALMemoryGetStorageAreaProtectionState.

Memory
HALMemorySetStorageAreaProtectionState

72 DAL Reference
PalmSource Confidential

DAL Reference 73
PalmSource Confidential

12
Real Time Clock
Support
This chapter describes the API functions of the HAL that deal with
the Real Time Clock (RTC). They are described in alphabetical
sequence.

Real Time Clock Support Data Structures
None applicable.

Real Time Clock Support Functions

HALTimeGetAlarm Function
Purpose This function gets the current alarm setting in seconds since 1

January 1904. This function is reserved for use by the Alarm
Manager.

Prototype Err HALTimeGetAlarm(UInt32 *AlarmSeconds)

Parameters → AlarmSeconds
The current alarm setting in seconds since
1/1/1904.

Returns 0
If no error.

Comments CTLTimeMgr.c

Replaces TimGetAlarm() function from the HAL API for Palm OS
4.0.

This function is called by the Alarm Manager.

Real Time Clock Support
HALTimeGetSeconds

74 DAL Reference
PalmSource Confidential

Since TimSetAlarm() is reserved for Alarm Manager use, it does
not require its own semaphore to assure data integrity. The Alarm
Manager uses a semaphore for this purpose.

This function first masks the Real Time Clock (RTC) interrupt, then
gets the number of alarm seconds, and finally unmasks the RTC
interrupt.

See Also HALTimeSetAlarm

HALTimeGetSeconds Function
Purpose This function returns the number of seconds since 1 January 1904.

Prototype UInt32 HALTimeGetSeconds(void)

Parameters None.

Returns Returns number of seconds since 1/1/1904.

Comments CTLTimeMgr.c

Replaces TimGetSeconds() function from the HAL API for Palm
OS 4.0.

This function is called by many HAL and Palm OS functions.

See Also HALTimeGetSystemTime
HALTimeGetSystemTimerInterval
HALTimeSetSeconds

HALTimeGetSystemTime Function
Purpose Returns the number of milliseconds since boot time.

Prototype UInt32 HALTimeGetSystemTime(void)

Parameters None.

Returns Returns the system time counter value snapshot.

Comments CTLTimeMgr.c

Real Time Clock Support
HALTimeSetAlarm

DAL Reference 75
PalmSource Confidential

HALTimeGetSystemTimerInterval Function
Purpose Returns the effective number of system ticks per second.

Prototype UInt32 HALTimeGetSystemTimerInterval(void)

Parameters None.

Returns Returns number of milliseconds between system time interrupts.

Comments CTLTimeMgr.c

See Also SysTicksPerSecond

HALTimeSetAlarm Function
Sets an alarm in seconds since 1 January 1904. It is reserved for use
by the Alarm Manager.

Prototype Err HALTimeSetAlarm(UInt32 iAlarmSeconds)

Parameters → iAlarmSeconds
Alarm in seconds since 1 January 1904, or 0 to cancel the
current alarm.

Returns 0.
If no error.

Comments CTLTimeMgr.c

Replaces TimSetAlarm() function from the HAL API for Palm OS
4.0.

This function is called by the Alarm Manager, and by
AlmEnableNotification(), AlmCancelAll(),
AlmDisplayAlarm(), and PrvSetNextAlarm().

Since TimSetAlarm() is reserved for the Alarm Manager use, it
does not require its own semaphore to assure data integrity. The
Alarm Manager uses a semaphore for this purpose.

This function first masks the Real Time Clock (RTC) interrupt, then
calculates the number of alarm seconds, and finally unmasks the
RTC interrupt.

Palm OS permits only one RTC alarm to exist at any one time. When
calling this function, any existing alarm set by previous calls to
HALTimeSetAlarm() is overridden.

Real Time Clock Support
HALTimeSetSeconds

76 DAL Reference
PalmSource Confidential

The DAL implementation needs to enqueue and return an RTC
(alarm) event to the Palm OS when an alarm set by
HALTimeSetAlarm() expires. If the device is in sleep mode when
the alarm expires, it is the responsibility of the DAL to wake up the
device before posting the RTC event.

See Also AlmEnableNotification
AlmCancelAll
AlmDisplayAlarm
PrvSetNextAlarm

HALTimeSetSeconds Function
Purpose This function sets the time of the device.

Prototype Err TimSetSeconds(UInt32 iSeconds)

Parameters → iSeconds
Number of seconds since 1 January 1904.

Returns 0
If no error.

Comments CTLTimeMgr.c

Replaces TimSetSeconds() function from the HAL API for Palm
OS 4.0.

This function is called by many HAL and system functions.

DAL Reference 77
PalmSource Confidential

13
Serial Drivers
This chapter describes the API functions of the HAL that deal with
drivers for serial communications. There are two main sections. The
Virtual Driver section starts with “Virtual Driver Data Structures”
on page 78. This section applies to all ports that emulate serial
communications. The USB Driver section is much shorter and starts
with “USB Data Structures” on page 95. This section contains
material specific to a virtual driver that controls a USB port.

For details on writing a driver, consult Serial Communications Driver
Design Guide.

Brief Overview of Virtual Drivers
Palm OS 4.0 introduced the concept of a virtual driver, which has the
following characteristics:

• It can manage multiple serial ports at once.

• It can transmit and receive data in blocks or bytes.

• It may control a different kind of port, such as IR or USB, that
is emulating a serial connection.

The serial port abstraction is defined to be the line between the
Serial Manager and its drivers. This means that the serial drivers are
entirely implemented in the HAL.

These drivers are shared libraries, and many of them can exist
simultaneously. So, the API presented below is not really the HAL
interface to serial communications. It is more the API of the
functions that a serial driver must implement.

When the DAL runs using the same runtime model as the Palm OS,
a driver implementation is really straightforward because it is easy
to call inside the driver from Palm OS, as well as let the driver call
back to the Palm OS.

But, if the DAL runtime is different than that of Palm OS, special
care must be taken. Indeed, in that case, the driver-exported

Serial Drivers
Virtual Driver Data Structures

78 DAL Reference
PalmSource Confidential

functions will be initially called using the Palm OS runtime, but the
driver itself will have been built to use the DAL runtime. Some
wrapper capable of switching runtimes will therefore be needed in
the driver.

As it is the case for all shared libraries, a driver will return its entry
point function pointer when it is loaded. This entry point is called
HALSerialEntrypoint and is described below. The Serial
Manager will call this entry point and get back the function pointers
that will let it use the port. Prototypes for these functions are
described below. Understand that these are only templates and that
each serial driver must implement its own set.

In Palm OS, the following functions are implemented using serial
drivers:

• RS232

• IrCOMM

• Serial emulation over USB.

A driver for a USB port will provide almost all the same functions as
a driver for regular serial port. In the current implementation, only
one special function is needed specifically for USB support.

Virtual Driver Data Structures

DrvEntryOpCodeEnum Enum
Purpose The serial manager can call this entry point with three different

opcodes. The driver must return the requested data in the space
pointed to by oData. The three opcodes are defined as:

Constants typedef enum DrvrEntryOpCodeTag
DrvrEntryOpCodeEnum;

enum DrvrEntryOpCodeTag
{

drvrEntryGetPortCount,
drvrEntryGetDrvrFuncts,
drvrEntryGetPortFtrsNEntries

};

Serial Drivers
DrvInfoType

DAL Reference 79
PalmSource Confidential

Fields Value Descriptions

DrvInfoType Struct
Purpose The DrvInfoType is a structure that provides

HALSerialEntryPoint a place to return various characteristics of
a given port. The first field specifies the port in question.

A pointer to this type is passed back by HalSerialEntryPoint
when the drvEntryGetPortFtrsNEntries opcode is passed in.

Prototype typedef struct DrvrInfoTag DrvrInfoType
struct DrvrInfoTag
{

UInt8 portNumber;
UInt32 drvrID;
UInt32 drvrVersion;
UInt32 maxBaudRate;
UInt32 portFlags;
const Char *portDesc;

Uint32 dbCreator;
};

Fields Field Descriptions

drvrEntryGetPortCount Used to request that the driver return the
number of ports it handles. In this case, oData
points to a UInt16.

drvrEntryGetDrvrFuncts Used to request that the driver initialize oData
with pointers to its functions. This is used when
a client opens the port. In this case, oData
points to a VdrvAPIType.

drvrEntryGetPortFtrsNEntries Used to request information on the port.
HalSerialEntryPoint must be called with
this opcode, once for each port.

In this case, oData points to a DrvrInfoType.
The portNumber field of the DrvrInfoType
must be set to the index of the currently
requested port (first port is number 0). The
driver will set the remaining fields in the
DrvrInfoType.

Serial Drivers
DrvInfoType

80 DAL Reference
PalmSource Confidential

portNumber Must not be changed. On entry to
this function, it will contain the port
number (zero based) for which the
serial manager currently requests
information.

drvrID Will be set to the port Id the
application will need to specify to
select a driver. Must be set to
something unique for each port
amongst all drivers (e.g. COM1,
COM2, etc.). Possibly that it will not
be the same as dbCreator.

drvrVersion Must be set to the kDrvrVersion
constant, which represents the SDK
current version.

maxBaudRate Field will be set to a numeric value
equal to the maximum speed this
port can handle. For drivers using a
transport for which setting a speed
has no sense (IR, TCP routing, etc.),
just specify 230400L.

portFlags Specifies the port’s features and
capabilities (see SerialVdrvr.h).
This is where the driver says if it
handles an RS232 port, an IR
transceiver, a USB connection etc.
See “Port Flags Constants” on
page 81.

Serial Drivers
DrvInfoType

DAL Reference 81
PalmSource Confidential

Port Flags Constants

The portFlags field of the DrvInfoTag structure mentioned
above contains a bitfield value. Flags can be turned off or on, using
constants defined in SerialVdrv.h. Serial driver programming
deals mainly with the following constants.

portDesc Can be set to zero. In this case, it will
be initialized later by the serial
manager to point to the port name,
whose string must be stored in a
resource. The resource type is
‘tSTL’ (string list) and resource id
is 1000. The port number serves as an
index in the string list to get the port
name. If you choose to use this
resource, the port list has to be fixed
and statically ordered.

If the port name cannot be known in
advance, the driver can allocate a
memory block to store the port name
and store a pointer to this block in
the portDesc field. This block must
be assigned to the system
(OwnerID=0) and will become its
property.

dbCreator Will be set to the driver’s code
database creator. This is the PRC
containing the driver code.

Constant Value Description

portBkgndModeSupported 0x00000002 Denotes that this port can be used
for background mode.Background
mode support is implied on
physical drivers.

portRS232Capable 0x00000004 Driver supports communications
through an RS-232 port. Usually
OR’ed with portCradlePort.
May also be OR’ed with
portIRDACapable.

Serial Drivers
DrvRcvQTag

82 DAL Reference
PalmSource Confidential

DrvRcvQTag Struct
This structure contains pointers to callback functions provided by
the serial manager for accessing its receive queue. These callbacks
are invoked by the driver in order to write incoming data to the
serial manager. See prototypes of the function pointers directly
following the table.

portIRDACapable 0x00000008 Driver supports communications
via an IR port, using IRDA mode.
Usually OR’ed with
portCradlePort. May also
be OR’ed with
portRS232Capable.

portCradlePort 0x00000010 Driver assumes that the port is the
device’s cradle port. Usually, this
value is OR’ed with one or more
other values from the table.

portExternalPort 0x00000020 Denotes this SerialHW's port is
external or on a memory card.

portModemPort 0x00000040 Denotes this SerialHW
communicates with a modem.

portCncMgrVisible 0x00000080 Denotes this serial port's name is
to be displayed in the Connection
panel.

portPrivateUse 0x00001000 Set if this driver is for special
software and NOT general
applications in the system.

portUSBCapable 0x00000200 Driver supports a USB connection.
Usually OR’ed with
portCradlePort. In the default
drivers shipped to licensees, USB
support has its own driver, and
the value is not OR’ed with
port232Capable.

Constant Value Description

Serial Drivers
DrvRcvQTag

DAL Reference 83
PalmSource Confidential

Prototype typedef struct DrvrRcvQTag {
void *rcvQ;
WriteByteProcPtr qWriteByte;
WriteBlockProcPtr qWriteBlock;
GetSizeProcPtr qGetSize;
GetSpaceProcPtr qGetSpace;

} DrvrRcvQType;

typedef DrvrRcvQType *DrvrRcvQPtr;

Fields Field Descriptions

Receive Queue Callbacks

The serial manager provides callbacks that give access to its receive
queue. The prototypes of these function pointers appear below. For
detailed descriptions, see “Serial Manager Queue Functions” in the
Palm OS Programmer’s API Reference.

Prototypes of Callback Functions
typedef Err(*WriteByteProcPtr)(void *theQ, UInt8
theByte, UInt16 lineErrs);

void *rcvQ; Pointer to the serial manager’s
receive queue, where your driver
will write incoming data.

qWriteByte Function pointer to function that
writes one incoming byte to the
serial manager’s receive queue.

qWriteBlock Function pointer to function that
writes one block of incoming bytes to
the serial manager’s receive queue
from the receive queue.

qGetSize Function pointer to function
returning the total size, in bytes, of
the serial manager’s receive queue.

qGetSpace Function pointer to function
returning the available space, in
bytes, of the serial manager’s receive
queue.

Serial Drivers
DrvRcvQTag

84 DAL Reference
PalmSource Confidential

typedef Err(*WriteBlockProcPtr)(void *theQ,
UInt8 *bufP, UInt16 size, UInt16 lineErrs);

typedef UInt32(*GetSizeProcPtr)(void *theQ);

typedef UInt32(*GetSpaceProcPtr)(void *theQ);

Parameters to Callbacks

VdrvAPIType
The VdrvAPIType is a structure whose members are function
pointers. The functions in question are defined in the driver.

A pointer to this type is passed back by HalSerialEntryPoint
when the drvrEntryGetDrvrFuncts opcode is passed in.

typedef struct VdrvAPITag VdrvAPIType
struct VdrvAPITag
{

VdrvOpenProcPtr HALSerialOpen;
VdrvCloseProcPtr HALSerialClose;
VdrvControlProcPtr HALSerialControl;
VdrvStatusProcPtr HALSerialStatus;
VdrvWriteProcPtr HALSerialWrite;
VdrvControlCustomProcPtr
HALSerialControlCustom;

-> *theQ Pointer to the serial manager’s
receive queue.

-> theByte One byte of incoming data that
driver is writing to the serial
manager’s receive queue.

-> *bufP Pointer to a buffer of incoming data
that driver is writing to the serial
manager’s receive queue.

-> size Size of the buffer pointed to by
*bufP.

-> lineErrs Any serial line errors should be
reported here.

Serial Drivers
DrvRcvQTag

DAL Reference 85
PalmSource Confidential

};

VdrvConfigType
This structure is used to hold configuration information about the
connection. Values are set by the call to the HALSerialOpen()
routine—which may have a different name, since it is always called
via a function pointer. For instance, the routine is sometimes named
VdrvOpen().
typedef struct VdrvConfigType {

UInt32 baud;
UInt32 drvrId;
UInt32 function;
MemPtr drvrDataP;
UInt16 drvrDataSize;

} VdrvConfigType;
typedef VdrvConfigType *VdrvConfigPtr;

Fields

UInt32 baud; Baud rate at which to connect.

UInt32 drvrId Creator ID of the driver that is
handling the port that was opened.

UInt32 function Function Id of the connection. Used
only by USB connections. Identifies
which application on the device
opened the port. This information is
used by the desktop’s USB driver to
locate the corresponding application
on the desktop.

MemPtr drvrDataP Pointer to driver-specific data.
Needed by blueTooth; ignored
otherwise.

UInt16 drvrDataSize Size of the driver specific data block.
Needed by blueTooth, ignored
otherwise.

Serial Drivers
Virtual Driver Functions

86 DAL Reference
PalmSource Confidential

VdrvDataPtr
This is a generic pointer, used as an out-parameter from the
HALSerialOpen() routine. Private data particular to the opened
port is stored at this location.

typedef void *VdrvDataPtr;

Virtual Driver Functions

HALSerialClose Function
Purpose This function is called to close a previously opened port.

Prototype Err HALSerialClose (VdrvDataPtr idrvrData)

Parameters Port information related to the port to close

Returns 0
If no error.

Comments lbcSerialDriver.c

The driver must deallocate everything that it allocated in
HALSerialOpen.

HALSerialControl Function
Purpose This function is used to access low level driver functions, like setting

the baud rate.

Prototype Err HALSerialControl(VdrvDataPtr idrvrData,
VdrvCtlOpCodeEnum iControlCode,
void* ioControlData, UInt16* ioControlDataLen
);

Parameters idrvrData
The driver’s private data pointer.

iControlCode
A control function opCode. One of the opCodes listed in the
VdrvCtlOpCodeEnum type.

Serial Drivers
HALSerialControl

DAL Reference 87
PalmSource Confidential

ioControlData
A pointer to data for the specified control function.
Depending on the function, this can be a pointer to input
data, or a pointer to space for returned data.

ioControlDataLen
A pointer to the length of data being passed in or out.

Returns 0
If no error.

Comments lbcSerialDriver.c

This function needs to support the opcodes listed in the
VdrvCtlOpCodeEnum type. If an opcode is unsupported, the call
must return the serErrNotSupported error code for that opcode.
The following table lists the constants defined by the
VdrvCtlOpCodeEnum type and describes the corresponding
ioControlDataP and ioControlDataLenP parameters. Some
control codes just perform an action but do not input nor output any
data.

Constant Description

vdrvOpCodeSetBaudRate IoControlData points to a UInt32
specifying the new desired baud rate.

vdrvOpCodeSetSettingsFlags IoControlData points to a UInt32
specifying the new desired settings.

vdrvOpCodeSetCtsTimeout IoControlData points to a UInt32
specifying the CTS timeout in ticks. This
timeout is the amount of time the function
HALSerialWrite should wait when CTS is
held down before returning a serErrTimeout.

vdrvOpCodeClearErr This opcode instructs the driver that the serial
manager has cleared its sticky hardware error,
and that the driver should now clear them in
the hardware if necessary.

vdrvOpCodeSetSleepMode The device is now going to sleep, so the
driver should suspend the underlying
hardware.

Serial Drivers
HALSerialControl

88 DAL Reference
PalmSource Confidential

vdrvOpCodeSetWakeupMode The device is now waking up. The driver
should restore what it suspended when the
port was put to sleep.

vdrvOpCodeTxFIFOCount IoControlData points to a UInt32 into
which the driver must store the number of
bytes that are in the send queue waiting to be
sent out.

vdrvOpCodeStartBreak Start a break signal.

vdrvOpCodeStopBreak Stop a break signal

vdrvOpCodeStartLoopback Start loopback mode.

vdrvOpCodeStopLoopback Stop loopback mode.

vdrvOpCodeFlushTxFIFO Kill all data waiting in the send queue

vdrvOpCodeFlushRxFIFO Kill all data that has arrived in the device but
that has not been read yet by the driver input
handler (ISP, read thread or other).

vdrvOpCodeSendBufferedData Waits until all data that is still in the send
queue be sent out. If it is not possible to send
all the data without blocking for more than
the current CTS timeout, return
serErrTimeout.

vdrvOpCodeGetOptTransmitSize IoControlData points to a UInt32 where
the driver must store the optimum buffer size
for sending data. If the driver does not buffer
transmit data, it must return 0.

vdrvOpCodeGetRcvTheshold IoControlData points to a UInt32 where
the driver must store the number of free bytes
that must be available in the receive queue
before it will store more data in it. The serial
manager will use this to calculate the largest
block that is guaranteed to be delivered by
the driver before it holds the input.

Constant Description

Serial Drivers
HALSerialControl

DAL Reference 89
PalmSource Confidential

vdrvOpCodeSetWakeupMode The device is now waking up. The driver
should restore what it suspended when the
port was put to sleep.

vdrvOpCodeTxFIFOCount IoControlData points to a UInt32 into
which the driver must store the number of
bytes that are in the send queue waiting to be
sent out.

vdrvOpCodeStartBreak Start a break signal.

vdrvOpCodeStopBreak Stop a break signal

vdrvOpCodeStartLoopback Start loopback mode.

vdrvOpCodeStopLoopback Stop loopback mode.

vdrvOpCodeFlushTxFIFO Kill all data waiting in the send queue

vdrvOpCodeFlushRxFIFO Kill all data that has arrived in the device but
that has not been read yet by the driver input
handler (ISP, read thread or other).

vdrvOpCodeSendBufferedData Waits until all data that is still in the send
queue be sent out. If it is not possible to send
all the data without blocking for more than
the current CTS timeout, return
serErrTimeout.

vdrvOpCodeGetOptTransmitSize IoControlData points to a UInt32 where
the driver must store the optimum buffer size
for sending data. If the driver does not buffer
transmit data, it must return 0.

vdrvOpCodeGetRcvTheshold IoControlData points to a UInt32 where
the driver must store the number of free bytes
that must be available in the receive queue
before it will store more data in it. The serial
manager will use this to calculate the largest
block that is guaranteed to be delivered by
the driver before it holds the input.

Constant Description

Serial Drivers
HALSerialControlCustom

90 DAL Reference
PalmSource Confidential

HALSerialControlCustom Function
Purpose This function enables a driver to make sure that a custom control

opcode is really supported by this driver (and that it is not just the
same id as a custom opcode from a different driver). This is
accomplished by adding the driver creator to the prototype.

Purpose Err HALSerialControlCustom (VdrvDataPtr idrvrData,
UInt16 iControlCode, UInt32 iCreator,
void* ioControlData,
UInt16* ioControlDataLen);

Parameters idrvrData
The driver’s private data.

iControlCode
A control function opcode.

vdrvOpCodeNotifyBytesReadFromQ This notifies the driver that some space has
been made in the serial receive queue. If the
driver receive handler was suspended
waiting for space to push more bytes in the
receive queue, it can resume now.

vdrvOpCodeSetDTRAsserted IoControlData points to a Boolean
specifying if the DTR line must be set to a
high (if true) or low (if false) level.

vdrvOpCodeGetDTRAsserted IoControlData points to a Boolean where
the driver must store true if the DTR line is
currently at a high level, or false otherwise.

vdrvOpCodeWaitForConfiguration The serial manager uses this opcode before it
calls SrmSend or SrmReceive, in order to let
the driver finish any lengthy initialization it
would have started in HALSerialOpen.

vdrvOpCodeGetUSBDeviceDescriptor Query driver for device descriptor for USB.

vdrvOpCodeGetUSBConfigDescriptor Query driver for configuration descriptor for
USB.

Constant Description

Serial Drivers
HALSerialEntryPoint

DAL Reference 91
PalmSource Confidential

iCreator
The application asking for this opcode also passes the
expected driver creator here. The driver must make sure this
call can be handled appropriately.

ioControlData
A pointer to data for the specified control function.
Depending on the function, this can be input data, or a
pointer to space for returned data.

ioControlDataLen
A pointer to the length of data being passed in or out.

Returns 0
If no error.

Compatibility lbcSerialDriver.c

There are no opcodes currently defined, as each driver will define
their own. Most drivers do not implement specific opcodes and
should just return a serErrNotSupported.

HALSerialEntryPoint Function
Purpose This function is the one returned by RALLoadModule when a

driver is loaded (therefore, this function must be exported from its
module). All drivers are loaded at boot time when the serial
manager initializes.

Prototype Err HalSerialEntryPoint
(DrvrEntryOpCodeEnum iOpCode, void *oData)

Parameters iOpCode
Specify the function and the data type asked to the entry
point.

oData
A pointer to a UInt16, DrvrInfoType, or VdrvAPIType
structure, depending on the opCode. This pointer is used to
return the data.

Returns Returns 0 if call succeeded, otherwise the return value is non-zero
(the port will not show up at all in Palm OS).

Comments lbcSerialDriver.c

Serial Drivers
HALSerialOpen

92 DAL Reference
PalmSource Confidential

If some hardware or software must be available to use a port, this
function can check for these requirements and return an error any of
them are not available. In this case, the port will simply be ignored
and hidden. Since the needed resources, however, may not be
checkable at boot time, an alternative is to return zero anyway. Then
you can wait until some application opens the port and can report
an error if the needed resource is still not available.

NOTE: The functions described in this section can have
whatever names you assign them in the serial driver. They are
always called using a function pointer. Elsewhere in the
documentation, for instance, these may be called VdrvOpen(),
VdrvClose(), etc.

HALSerialOpen Function
Purpose This function initializes the port so that it is ready to send and

receive data. This can mean for example initializing a physical
UART or create an IrCOMM instance.

Prototype Err HALSerialOpen (VdrvDataPtr oDrvrData,
VdrvConfigPtr iConfig, DrvrRcvQPtr iRcvQ);

Parameters oDrvrData
A pointer to a VdrvDataType field where the driver can
store some private port-dependant data. This data will be
passed back to the driver with every HALSerialXXX call.

iConfig
The structure pointed by iConfig contains the initial baud
rate. drvrId specifies which port the client wants to open.
Parameters drvrData and drvrDataSize will be used
only by drivers that need special data passed in from the
client opening the port (e.g. the Bluetooth driver passes some
channel information here). Drivers that don’t have this need
should just ignore these fields.
The yield related parameters are passed to the driver so that
it can eventually forward them to an underlying driver that it
uses these parameters.

Serial Drivers
HALSerialOpen

DAL Reference 93
PalmSource Confidential

iRcvQ
The iRcvQ parameter contains a pointer to a structure
containing function pointers. Each one points to a callback
provided by the serial manager so that drivers can access its
receive queue. The driver invokes these callbacks when it has
incoming data to send to the serial manager.

NOTE: The serial driver provides no API routine to perform
synchronous receive. Instead, the driver directly accesses the
serial manager’s receive queue by means of the iRcvQ field.

Returns 0
If no error.

Comments lbcSerialDriver.c

Type definitions used by this function include:

typedef Err (*WriteByteProcPtr)(void *theQ, UInt8
theByte,UInt16 lineErrs);

typedef Err (*WriteBlockProcPtr)(void *theQ, UInt8 *bufP,
UInt16 size, UInt16 lineErrs);

typedef UInt32 (*GetSizeProcPtr)(void *theQ);
typedef UInt32 (*GetSpaceProcPtr)(void *theQ);
typedef void (*SignalCheckPtr)(void *theQ, UInt16 lineErrs);

typedef struct DrvrRcvQTag DrvrRcvQType;
struct DrvrRcvQTag
{

void*rcvQ;
WriteByteProcPtrqWriteByte;
WriteBlockProcPtrqWriteBlock;
GetSizeProcPtrqGetSize;
GetSpaceProcPtrqGetSpace;

};

typedef struct VdrvConfigTag VdrvConfigType;
struct VdrvConfigTag
{

UInt32baud;
UInt32drvrId;
UInt32function;
MemPtrdrvrDataP;
UInt16drvrDataSize;
SrmYieldPortProcPtryieldPortCallBackP;
UInt32yieldPortRefCon;

Serial Drivers
HALSerialStatus

94 DAL Reference
PalmSource Confidential

};

typedef void* VdrvDataType;

HALSerialStatus Function
Purpose Returns the port status. The information returned includes the state

of the following lines: RTS, CTS, and DSR. It also indicates if a break
condition has been detected.

Prototype Err HALSerialStatus(VdrvDataType idrvrData,
UInt16* oStatus);

Parameters idrvrData
A pointer to the driver’s private data.

oStatus
The port status is returned in this parameter

Returns 0
If no error.

Comments lbcSerialDriver.c.

The port status is made from the mask values defined in
DrvrStatusEnum.

typedef enum DrvrStatusTag DrvrStatusEnum;
enum DrvrStatusTag
{

drvrStatusCtsOn= 0x0001,
drvrStatusRtsOn= 0x0002,
drvrStatusDsrOn= 0x0004,
drvrStatusBreakAsserted= 0x0020

};

Serial Drivers
UsbDeviceRequestType

DAL Reference 95
PalmSource Confidential

HALSerialWrite Function
Purpose This function sends data out through the port.

Prototype UInt32 HALSerialWrite(VdrvDataPtr idrvrData,
Const void* iBuffer,
UInt32 ioLength,
Err *errP)

Parameters idrvrData
The driver’s private data.

iBuffer
A pointer to the buffer containing the data to be written to
the virtual device.

ioLength
The number of bytes to be written is passed into the function.
The number of bytes actually written is passed back.

errP
Pointer to error code returned

Returns Returns the number of bytes actually written

Comments lbcSerialDriver.c

This function will block until all the bytes are written, or an error
occurs. The only possible error is a serErrTimeout, which means
the CTS line was held down for more than the current CTS timeout.

Even if the implementation allows for asynchronous sending, the
driver should still block until data has all been sent out, because the
caller is expecting this behavior.

USB Data Structures

UsbDeviceRequestType Struct
Purpose This structure is used by USBRequestGetExtConnectionInfo.

Prototype typedef struct {
UInt8 bmRequestType;
UInt8 bRequest;
UInt16 wValue;

Serial Drivers
USB Driver Functions

96 DAL Reference
PalmSource Confidential

UInt16 wIndex;
UInt16 wLength;

} UsbDeviceRequestType,* UsbDeviceRequestPtr;

Fields

USB Driver Functions

UsbConnect Function
Purpose This function initializes the USB hardware and starts the

enumeration.

Prototype void UsbConnect (void);

Parameters None.

Returns None.

Comments ctlUsbIO.c

UsbDisconnect Function
Purpose This function de-enumerates.

Prototype void UsbDisconnect (void);

Parameters None.

Returns None.

Comments ctlUsbIO.c

bmRequestType

bRequest

wValue

wIndex

wLength

Serial Drivers
UsbRequestGetExtConnectionInfo

DAL Reference 97
PalmSource Confidential

UsbHwrInit Function
Purpose This routine sets up the USB chip. It is called by

HwrPostDebugInit.

Prototype void UsbHwrInit (Boolean reset);

Parameters → reset
If true, function initializes USB chip and puts it in low
power.

If false, function performs the minimum initialization of
the USB chip and puts it in low power.

Returns None.

Comments ctlUsbHwrInit.c

UsbRequestGetExtConnectionInfo Function
Purpose This routine handles the vendor-defined GetExtConnectionInfo

request. This request is sent by the host during enumeration to get
information about the nature of the connections. This function
supersedes UsbRequestGetConnectionInfo.

Prototype static void UsbRequestGetExtConnectionInfo
(VdrvDataPtr idrvrData,
UsbDeviceRequestPtr requestP);

Parameters → idrvrData
The driver’s private data.

→ requestP
Vendor Device Request

Returns None.

Comments ctlUsbRequest.c

The UsbDeviceRequestPtr is defined in ctlUsbRequest.h.

Serial Drivers
UsbRequestGetExtConnectionInfo

98 DAL Reference
PalmSource Confidential

DAL Reference 99
PalmSource Confidential

14
Screen
Drawing functionality is provided by four software components
that work in concert: the window manager, the screen manager, the
blitter, and the display driver. The window manager is part of the
Palm OS® and cannot be modified. The other three components are
part of the HAL and can be modified by licensees. For a discussion
of how the components divide up the work of producing graphic
display, see “Display Architecture” in Display Driver Design Guide.

This chapter describes the screen manager and the blitter. Data
structures and constants applying to both are presented first. Then
Screen manager functions are presented, followed by blitter
functions.

The bulk of the material describes the blitter, which is the low-level
and behind-the-scenes component responsible for drawing graphic
primitives. It generates the drawing primitives, initializes the
blitting state variables, and applies logical operations on the source
data while writing pixel values to the destination bitmap. This
destination bitmap can be either the LCD display, or an offscreen
window.

The destination bitmap is part of something called a canvas, which is
the DAL equivalent of a graphics port. A canvas also contains
information about the drawing state, such as object colors (e.g.
foreground, background, text), transfer modes, and patterns.
Drawing functions are context free, i.e. all drawing functions require
that a pointer to a CanvasType structure be passed as a parameter.

Each primitive drawing operation can lead to one of two
possibilities:

• Drawing to the device’s display (that is, the video memory)

• Drawing to a Palm OS format off-screen buffer

Note that the blitter is the graphics component closest to the video
display hardware. It is, therefore, the component that licensees will
modify to incorporate support for hardware video acceleration.

Screen

100 DAL Reference
PalmSource Confidential

All these issues are discussed in more detail in Display Driver Design
Guide.

Blitter Supports High Density
The blitter code that ships with the current DAL provides native
support for double-density and one-and-a-half density, in addition
to single-density.

NOTE: A previous release of the PDK (Palm OS 5 release 5.0)
had glue functions to provide single-density support. They are not
part of the current release. Since the glue functions and the blitter
functions have very similar names, be sure you are editing the
correct functions. For instance, the previous release had a glue
function named HALDrawLine, whereas the current release has
a blitter routine named HAL_Drawline.

Intermediate Buffer Not Needed
In the previous release(s) of Palm OS PDK, you had to create an
intermediate buffer for unusual combinations of processor and
video controller endianness. The standard combination in Palm
OS 5 is a little-endian ARM processor and a little-pixel-endian video
controller. (For more details about little-pixel-endian graphics, refer
to the section “Pixel Arrangements” in the Display Driver Design
Guide). The current version of the DAL has built-in support for most
combinations of processor and video controller. Consequently, you
will probably not need to create your own intermediate buffer.

Screen
Screen Data Structures

DAL Reference 101
PalmSource Confidential

Screen Data Structures
These are the data structures used by the screen manager and the
blitter.

AbsRectType
typedef struct AbsRectType {
 Coord left;
 Coord top;
 Coord right;
 Coord bottom;
} AbsRectType;

Field Descriptions

left Left coordinate of the rectangle.

top Top coordinate of the rectangle.

right Right coordinate of the rectangle.

bottom Bottom coordinate of the rectangle.

Screen
Screen Data Structures

102 DAL Reference
PalmSource Confidential

BitmapCompressionType
The BitmapCompressionType enum specifies possible bitmap
compression types. These are the possible values for the
compressionType field of BitmapTypeV3 and BltBitmapType
data structures.

typedef enum {
BitmapCompressionTypeScanLine = 0,
BitmapCompressionTypeRLE,
BitmapCompressionTypePackBits,
BitmapCompressionTypeEnd,
BitmapCompressionTypeBest = 0x64,
BitmapCompressionTypeNone = 0xFF
} BitmapCompressionType;

Value Descriptions

BitmapFlagsType
The BitmapFlagsType bitmap defines the flags field of
BitmapTypeV3. Defined in CmnBitmapTypes.h, the
BitmapFlagsType specifies the attributes of a bitmap. (In this
context, a bitmap is a graphic image.)

BitmapCompressionTypeScanLine Use scan line compression. Scan
line compression is compatible
with Palm OS ® 2.0 and higher.

BitmapCompressionTypeRLE Use RLE compression. RLE
compression is supported in Palm
OS 3.5 and higher.

BitmapCompressionTypePackBits Use PackBits
compression.PackBits
compression is supported in Palm
OS 4.0 and higher.

BitmapCompressionTypeEnd For internal use only.

BitmapCompressionTypeBest For internal use only.

BitmapCompressionTypeNone No compression is used. This
value should only be used as an
argument to BmpCompress.

Screen
Screen Data Structures

DAL Reference 103
PalmSource Confidential

typedef struct BitmapFlagsType {
UInt16 compressed:1;
UInt16 hasColorTable:1;
UInt16 hasTransparency:1;
UInt16 indirect:1;
UInt16 forScreen:1;
UInt16 direct Color:1;
Uint16 indirectColorTable:1;
UInt16 noDither:1;
UInt16 reserved:8;
} BitmapFlagsType;

Field Descriptions

compressed If true, the bitmap is compressed
and the compression type field
specifies the compression used. If
false, the bitmap is
uncompressed. The
BmpCompress function sets this
field.

hasColorTable If true, the bitmap has its own
color table. If false, the bitmap
uses the system color table. You
specify whether the bitmap has
its own color table when you
create the bitmap.

hasTransparency If true, the OS will not draw
pixels that have a value equal to
the transparentIndex. If
false, the bitmap has no
transparency value. You specify
the transparent color when you
create the bitmap, using the Palm
OS Constructor user interface or
calling the Palm OS API
BmpSetTransparentValue.

Screen
Screen Data Structures

104 DAL Reference
PalmSource Confidential

BitmapTypeV3
The BitmapTypeV3 type is used extensively by the window
manager APIs of the Palm OS, by private drawing utilities in the
DAL, and by such DAL APIs as HALScreenInit. Although
usually declared as BitmapType in function prototypes, the actual
structure is of type BitmapTypeV3. For more information, see
BitmapType in the Palm OS Programmer’s API Reference.

NOTE: This definition corresponds to the 'Tbmp' and 'tAIB'
resource types.

indirect If true, the address to the
bitmap’s data is stored where the
bitmap itself would normally be
stored. The actual bitmap data is
stored elsewhere. If false, the
bitmap data is stored directly
following the bitmap header or
directly following the bitmap’s
color table if it has one. Never set
this flag.

forScreen If true, the bitmap is the bitmap
for the display (screen) window.
Never set this flag.

directColor If true, bitmap contains direct
RGB data, not palette indexes.

indirectColorTable If true, a pointer to the color table
for the bitmap is stored in place of
the color table. This allows
bitmaps to share color tables, thus
saving memory.

noDither If true, blitter does not dither
bitmaps when imaging.

reserved Reserved for future use.

Screen
Screen Data Structures

DAL Reference 105
PalmSource Confidential

typedef struct BitmapTypeV3
{

Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsType flags;
UInt8 pixelSize;
UInt8 version;

//version 3 fields
UInt8 size;
UInt8 pixelFormat;
UInt8 unused;
UInt8 compressionType;

UInt16 density;
UInt32 transparentValue
UInt32 nextBitmapOffset

// if (flags.hasColorTable)
// {
// if (flags.indirectColorTable)
// ColorTableType *colorTableP
// else
// ColorTableType colorTable;
// }
// if (flags.indirect)
// void* bitsP;
// else
// UInt8 bits[];

}
BitmapTypeV3;

Field Descriptions

width The width of the bitmap in pixels. You
specify this value when you create the
bitmap.

height The height of the bitmap in pixels. You
specify this value when you create the
bitmap.

rowBytes The number of bytes stored for each row
of the bitmap where height is the
number of rows.

Screen
Screen Data Structures

106 DAL Reference
PalmSource Confidential

BltBitmapType
The double-density window manager uses the BltBitmapType to
communicate bitmap information to the blitter. This structure is
designed for compatibility with the Palm OS BitmapType data
structure. The BltBitmapType is very similar to a BitmapTypeV3
(types 3 bitmaps). The notable difference is that the
BltBitmapType requires three fields that are optional on
BitmapTypeV3. These fields are colorTableP, bitmapDataP
and compressedSize.

flags The bitmap’s attributes. See
BitmapFlagsType.

pixelSize The bits per pixel. Currently supported
pixel depths are 1-, 2-, 4-, and 8-bit index
color and 16-bit direct color. You specify
this value when you create the bitmap.

version Version of the bitmap. This is version 3.

size Size of this structure in bytes. (0x16)

pixelFormat Format of the pixel data. See
PixelFormatType.

unused Reserved for future use.

compressionType See BitmapCompressionType

density Used by blitter to scale bitmaps.

transparentValue The index or RGB value of the
transparent color.

nextBitmapOffset Byte offset to next bitmap in bitmap
family.

colorTableP Pointer to color table.

colorTable Color table, which could have 0 entries.
Value is 2 bytes long.

bitsP Pointer to actual bits

bits Actual bits.

Screen
Screen Data Structures

DAL Reference 107
PalmSource Confidential

typedef struct BltBitmapType
{
// version 3 BitmapType
Int16 width;
Int16 height;
UInt16 rowBytes;
BitmapFlagsTyp flags;
UInt8 pixelSize;
UInt8 version;
UInt8 size;
UInt8 pixelFormat;
UInt8 unused;
UInt8 compressionType;
UInt16 density;
UInt32 transparentValue;
UInt32 nextBitmapOffset;
// blitter fields
ColorTableType* colorTableP;
void* bitmapDataP;
UInt32 compressedSize;
}

BltBitmapType;

Field Descriptions

width Width of bitmap image in pixels.

height Height of bitmap image in pixels.

rowBytes Number of bytes it takes to store a
single row of pixels:
width * bitdepth / 8

flags See BitmapFlagsType.

pixelSize Bits per pixel.

version Data structure version 3.

size Size of this structure in bytes (0x16).

pixelFormat Format of the pixel data.
See pixelFormatType in
CmnBitmapTypes.h.

unused Reserved for future use.

Screen
Screen Data Structures

108 DAL Reference
PalmSource Confidential

CanvasType
This double-density version of the CanvasType is used by the
blitter. It is the first argument in all calls to the blitter. This structure
encapsulates the context of the window state needed by the blitter,
while avoiding dependence on the WindowType data structure. It is
defined as follows:

typedef struct CanvasType {
RectangleType clippingRect;
DrawStateType* drawStateP;
BltBitmapType* bitmapP;

} CanvasType;

compressionType See BitmapCompressionType.

density Used by the blitter to scale bitmaps.

transparentValue The index or RGB value of the
transparent color, filling UInt32.

nextBitmapOffset Byte offset to next bitmap in bitmap
family.

colorTableP Pointer to the bitmap’s color table.
NULL is possible value.

bitmapDataP Pointer to bits of the image or the
bits of the compressed image.

compressedSize Size of compressed data.

Field Descriptions

clippingRect Clipping rectangle of the DrawWindow.
This represents the clipping bounds of
the destination bitmap.

Screen
Screen Data Structures

DAL Reference 109
PalmSource Confidential

The new blitter version of CanvasType does not have a
viewOrigin field. Instead, all drawing coordinates are relative to
the upper-left corner of the bitmap.

ColorTableType
Used by HALDraw_FindIndexes, and
HALScreenGetColorTable.

typedef struct ColorTableType
{

// high bits (numEntries > 256) reserved
UInt16 numEntries;
UInt16 reserved;
RGBColorType entry[];

}
ColorTableType;

CustomPatternType
typedef UInt8 CustomPatternType [8];
//8x8 1-bit deep pattern

drawStateP Pointer to the DrawWindow’s graphic
state (refer to the DrawStateType
structure defined below). Defined in
Window.h, it contains the transfer
mode, color, pattern, and font definitions

bitmapP A pointer to the destination bitmap.
Note that the destination bitmap is a
BltBitmapType.

Field Descriptions

numEntries Number of entries in table.

entry[] Variable-sized array of colors (0 to
numEntries-1).

Screen
Screen Data Structures

110 DAL Reference
PalmSource Confidential

DrawStateType
Used by HALDraw_GetPixel.

typedef struct DrawStateType
{

WinDrawOperation transferMode;
PatternType pattern;
UnderlineModeType underlineMode;
FontID fontId;
FontPtr font;
CustomPatternType patternData;

IndexedColorType foreColor;
IndexedColorType backColor;
IndexedColorType textColor;
UInt8 reserved;

RGBColorType foreColorRGB;
RGBColorType backColorRGB;
RGBColorType textColorRGB;

UInt16 coordinateSystem;
DrawStateFlagsType flags;
Fixed scale;
Fixed ntvToActiveScale;
Fixed stdToActiveScale;
Fixed activeToStdScale;

}

Field Descriptions

transferMode The current transfer mode for color
drawing.

pattern The ID of the current pattern. If set to
customPattern, the patternData
field contains the actual pattern.

underlineMode The ID of the current underline mode.

fontId The ID of the current font.

font A pointer to the current font.

Screen
Screen Data Structures

DAL Reference 111
PalmSource Confidential

patternData The current pattern being used by the
WinFill functions if pattern is
customPattern.

The following are only valid for indexed color bitmaps:

foreColor Index of the current color used for the
foreground.

backColor Index of the current color used for the
background.

textColor Index of the current color used for text.

reserved Reserved for future use.

The following are only valid for direct color bitmaps:

foreColorRGB RGB value of the current color used for
the foreground. Only valid for Palm OS
4.0 and 4.1.

backColorRGB RGB value of the current color used for
the background. Only valid for Palm OS
4.0 and 4.1.

textColorRGB RGB value of the current color used for
text. Only valid for Palm OS 4.0 and 4.1.

These fields are used when drawing most graphic primitives:

coordinateSystem The active coordinate system. Valid
values are described in “Window
Coordinate System Constants” on
page 114.

flags Flags that control how bitmaps and text
are scaled.

scale A fixed point value used to convert from
the draw window’s active coordinate
system to native coordinates.

Screen
Screen Data Structures

112 DAL Reference
PalmSource Confidential

IndexedColorType
typedef UInt8 IndexedColorType; //1-, 2-, 4-, or 8-bit index

PointType
Used by HALDrawSetPixels().

typedef struct PointType
{

Coord x;
Coord y;

} PointType

RectangleType
Used by HALDraw_Rectangle.

See also the macros AbsToRect and RectToAbs, defined in
CmnRectTypes.h.

typedef struct RectangleType {
PointType topLeft;

ntvToActiveScale A fixed point value used to convert from
the native coordinate system to the draw
window’s active coordinate system; the
inverse of scale.

stdToActiveScale A fixed point value used to convert from
the standard coordinate system to the
draw window’s active coordinate
system. This field is used internally to
convert font metrics, which are stored as
standard coordinates.

activeToStdScale A fixed point value used to convert from
the active coordinate system to the
standard coordinate system; the inverse
of stdToActive.

Screen
Screen Data Structures

DAL Reference 113
PalmSource Confidential

PointType extent;
} RectangleType;

RGBColorType
Used by HALDraw_FindIndexes and HALScreenLock and many
other functions.

typedef struct RGBColorType
{

UInt8 index;
UInt8 r;
UInt8 g;
UInt8 b;

}
RGBColorType;

WinLockInitType
Used by HALScreenLock.

typedef enum
{

winLockCopy, winLockErase, winLockDontCare

Field Descriptions

topLeft Top left coordinate

extent Width and height “co-ordinate.”

Field Descriptions

index Index of color or best match to current
CLUT. May be unused, if color-matching
is not performed.

r Amount of red, 0->255.

g Amount of green, 0->255.

b Amount of blue, 0->255.

Screen
Window Constants

114 DAL Reference
PalmSource Confidential

}
WinLockInitType;

Window Constants

Window Coordinate System Constants
These constants, defined in Window.h, specify the coordinate
system to be used when drawing within a given window:

WinDrawOperation Enumeration
The WinDrawOperation constants are also known as transfer mode
constants, since they specify how pixels are written to the screen
during drawing operations. The new blitter modifies the operation
of the original transfer modes slightly to make them more
consistent. The operations defined in this table apply to double-
density display.

This same set of constants is used by the Palm OS and by the DAL.
The third-party developer passes a constant to the Palm OS API
function, which passes it to the blitter function. Because
modifications to the transfer mode operations have merely

Constant Value Description

kCoordinatesNative 0 Use the bitmap’s native coordinate system;
this enables a 1-to-1 correspondence
between coordinates and pixels.

kCoordinatesStandard 72 The coordinate system used by most
handhelds running Palm OS 4.0 and earlier.
On a single-density handheld, there is one
screen pixel per standard coordinate. On a
high-density screen, there is more than one
screen pixel per standard coordinate.

kCoordinatesOneAndAHalf 108 One and a half times the standard
coordinate system.

kCoordinatesDouble 144 Twice the standard coordinate system.

Screen
Window Constants

DAL Reference 115
PalmSource Confidential

simplified DAL-level coding, existing third-party applications will
not be adversely affected.

enum WinDrawOperationTag {winPaint, winErase,
winMask, winInvert, winOverlay, winPaintInverse,
winSwap} ;

typedef Enum8 WinDrawOperation;

Value Descriptions

winPaint Write color-matched source pixel
to destination; if hasTransparency
flag is set, winPaint behaves like
winOverlay instead.

winErase Write backColor, if the source
pixel is transparent.

winMask Write backColor, if the source
pixel is not transparent.

winInvert Bitwise XOR the color-matched
source pixel onto the destination.
This mode does not honor the
transparent color in any way.

winOverlay Write color-matched source pixel
to the destination, if the source
pixel is not transparent.

winPaintInverse Invert the source pixel color and
then proceed as with winPaint.

winSwap The backColor and foreColor
destination colors are swapped if
the source is a pattern (the type of
pattern is disregarded). If the
source is a bitmap, then the
bitmap is transferred using
winPaint mode instead.

Screen
Window Constants

116 DAL Reference
PalmSource Confidential

The Transparent Color

As with Palm OS 4.X, a bitmap may designate a transparent color and
set a hasTransparency flag. These concepts are augmented somewhat
in Palm OS 5 to make the transfer modes more consistent.

When the hasTransparency flag is set and the transfer mode is
winPaint, only the non-transparent pixels are copied to the
destination. With bitonal data such as text and patterns, we can
safely assume that the off bits are the ones designated as transparent
and that the hasTransparency flag is always false. This
assumption retains backwards compatibility.

When drawing text using the winOverlay mode, the non-
transparent pixels are copied to the destination and the transparent
pixels are skipped over. This pixel-based definition of the operation
makes it suitable for 1- or multi-bit displays. With 1-bit display, the
off bits are considered to be the transparent color. Note that this
definition of winOverlay is new to Palm OS 5.

Color Defaults

The following default assumptions are made about color tables and
transparent colors:

• 2-bit, 4-bit, and 8-bit source bitmaps that don’t have a color
table inherit the system default color table for their given bit-
depth.

• 1-bit sources (bitmaps, text, and patterns) that don’t have a
color table are given a color table where entry 0 is the
backColor and entry 1 is the foreColor (textColor for
text)

• Bitmaps that don’t specify any transparent color (text,
patterns, and version 0 bitmaps) are assumed to have a
transparent color of index 0 and the hasTransparency bit
turned off.

Screen
HALRedrawInputArea

DAL Reference 117
PalmSource Confidential

Screen Manager Functions

HALRedrawInputArea Function
Purpose This function draws the input area. It is called by the display driver

when the screen base address, the screen depth, or the hardware
palette changes. It is also called when a user taps a button in the
input area to draw the button inverted, and by live ink
implementations to erase the ink.

Prototype Err HALRedrawInputArea(const RectangleType* rectP,
Boolean selected)

Parameters → rectP
Bounds of a rectangle within the input area that should be
redrawn. Set to NULL to redraw the whole input area. This
rectangle is specified in native coordinates, relative to the
input area window.

→ selected
If true, redraws using the “selected” version of the input area
bitmap. This bitmap is similar to the regular version, except
that the buttons are drawn in their inverted (selected) states.

Returns 0
If no error.

Comments HALScreenMgr.c

When the user taps in a button in the input area, and the OS
supports an active input area, then the SysHandleEvent routine
calls HALRedrawInputArea with the selected parameter set to true,
in order to invert the button on the screen. It then tracks the pen,
redrawing the button as necessary, until the pen goes up.

Compatibility Implemented in OS 5

Screen
HALScreenDefaultPalette

118 DAL Reference
PalmSource Confidential

HALScreenDefaultPalette Function
Purpose This function determines whether the screen palette is the default

palette.

Prototype Boolean ScrUpdateScreenBitmap(void)

Parameters None.

Returns Returns true, if screen palette is the default palette. Returns false
otherwise.

Comments HALScreenMgr.c

HALScreenDrawNotify Function
Purpose This function is used in special circumstances to notify the screen

manager that the display has been modified. See Comments below.

Prototype void HALScreenDrawNotify(Int16 updLeft, Int16
updTop, Int16 updWidth, Int16 updHeight)

Parameters updLeft
Left coordinate of update rectangle.

updTop
Top coordinate of update rectangle.

updWidth
Width of update rectangle.

updHeight
Height of update rectangle.

Returns None.

Comments HALScreenMgr.c

Calls HALScreenUpdateArea().

This function is called in two circumstances. It is called by all
blitting routines after modifying the screen display and is passed
the bounds rectangle of the drawing operation. It is also used when
there is an intermediate buffer. In the latter case, this function calls
HALScreenUpdateArea() in order to transfer the intermediate
buffer to the display hardware buffer. In the current release of the

Screen
HALScreenInit

DAL Reference 119
PalmSource Confidential

PDK, an intermediate buffer should not be required. See
“Intermediate Buffer Not Needed” on page 100.

See Also HALScreenSendUpdateArea

HALScreenGetColortable Function
Purpose This function returns the screen palette.

Prototype ColorTableType *HALScreenGetColortable(void)

Parameters None.

See “ColorTableType” on page 109 for more information about the
ColorTableType data type.

Returns Screen color table.

Comments HALScreenMgr.c

This function is used by WinRGBToIndex() and
WinIndexToRGB().

See Also WinRGBToIndex
WinIndexToRGB

HALScreenInit Function
Purpose This function initializes the screen bitmap and the display

hardware’s palette, and returns a pointer to the screen bitmap. The
screen bitmap is a BitmapType data structure (actually, a
BitmapTypeV3) that the Palm OS uses to hold information about
the contents currently being displayed onscreen. One of the fields of
the structure is a pointer to the bits in the frame buffer.

Prototype Err HALScreenInit(BitmapType** screenBitmapP,
ColorTableType* defaultPaletteP)

Parameters ← screenBitmapP
Out-parameter for returning the address of the initialized
screen bitmap.

→ defaultPaletteP
In-parameter for pointer to a default palette, which is used to
initialize the display hardware’s palette and the screen

Screen
HALScreenLock

120 DAL Reference
PalmSource Confidential

bitmap’s color table. Color table entries are stored in
colorEntries[], which is a field of the screen globals
structure (GScrGlobals).

See “BitmapTypeV3” on page 104 for more information about the
data type.

See “ColorTableType” on page 109 for more information about the
data type.

Returns Address of initialized bitmap in *screenBitmapP.
Color table entries stored in the screen globals structure. See
Parameters above.

Comments HALScreenMgr.c

This function is called by WinScreenInit() when the system
boots.

See Also WinScreenInit

HALScreenLock Function
Purpose This function reduces screen flicker and ensures smooth screen

updates.This function locks the screen, returning the address of a
new offscreen buffer to which the blitter writes.

Prototype UInt8 *HALScreenLock(WinLockInitType iMode)

Parameters → iMode
WinLockCopy—copy old screen to new.

WinLockErase—erase new screen to white.

WinLockDontCare—don't do anything.

Returns 0If no error.

Comments HALScreenMgr.c

Replaces ScrScreenLock() function from the HAL API for Palm
OS 4.0.

This function “locks” the display screen of the Palm OS device by
moving the existing frame buffer to a different address and then
returning the address of a new, offscreen buffer. The driver
continues to display the moved buffer while the blitter writes to the

Screen
HALScreenPalette

DAL Reference 121
PalmSource Confidential

offscreen buffer. When the screen is “unlocked,” the contents of the
offscreen buffer are reflected onscreen.

To support screen locking, your Palm OS device must have enough
VRAM for two frame buffers. If screen locking is not supported, the
HAL, via HALDisplayLock(), returns NULL to
HALScreenLock().

The controller supported by the sample DAL creates an offscreen
buffer in VRAM.

The screen lock count represents the number of times that
HALScreenLock() has been called. The screen must be unlocked
as many times as it was locked in order to actually update the
device display screen.

When an application locks the screen, the window manager calls the
screen manager which calls the display driver: WinScreenLock()
calls HALScreenLock(), which calls HALDisplayLock().

See Also HALScreenUnlock
WinScreenLock
HALDisplayLock

HALScreenPalette Function
Purpose This function sets the globals screen palette, and programs the

hardware palette.

Prototype Err ScrPalette(Int16 startIndex,
UInt16 numEntries, ColorTableType *tableP,
ColorTableType **palettes)

Parameters startindex
Starting palette entry for operation.

numEntries
Number of palette entries to operate on.

tableP
Source color table.

palettes Array of default system palettes.

See “ColorTableType” on page 109 for more information about the
data type.

Screen
HALScreenSendUpdateArea

122 DAL Reference
PalmSource Confidential

Returns sysErrNoFreeResourceThere is a memory allocation error.

errNone Success.

Comments HALScreenMgr.c

This function is called by WinPalette() when the screen palette is
changed. See WinPalette for a description of the arguments.

Update the GScrGlobalsP->colorTranslateP array when
setting the palette.

See Also HALScreenUpdateBitmap
WinPalette

HALScreenSendUpdateArea Function
Purpose This function calls the display transfer function defined by the

display driver. The display transfer function sends the contents of
the intermediate buffer, if any, to the display hardware buffer. The
updated bounds of the screen rectangle are then accessed by the
display driver.

Prototype void HALScreenSendUpdateArea(Boolean force)

Parameters force
If true, send update area regardless of last time it was sent.

If false, send update area only if the time threshold from the
last update has passed.

Returns None.

Comments HALScreenMgr.c

Called by HALScreenDrawNotify().

This function is called periodically to send an updated region of the
blitter’s intermediate buffer to the hardware for display controllers
that do not match the blitter’s standard format. You will probably
not need to use an intermediate buffer. See “Intermediate Buffer Not
Needed” on page 100.

See Also HALScreenDrawNotify.

Screen
HALScreenUnlock

DAL Reference 123
PalmSource Confidential

HALScreenUnlock Function
Purpose This function works in concert with HALScreenLock() to reduce

screen flicker and ensure smooth screen updates.It “unlocks” the
screen by replacing the buffer that the driver is currently displaying
with the offscreen “virtual” buffer.

Prototype Err HALScreenUnlock(void)

Parameters None.

Returns 0.
If no error.

Comments HALScreenMgr.c

Replaces the ScrScreenUnlock() function from the HAL API for
Palm OS 4.0.

This function sets the base address of the driver’s current buffer to
the base address of the offscreen frame buffer that was established
by an earlier call to HALScreenLock(). Consequently, the contents
of the offscreen buffer are displayed onscreen.

If the DAL uses the system heap to allocate its screen buffer, it gets
deallocated here. The controller supported by the sample DAL,
however, allocates its screen buffer in VRAM.

When an application unlocks the screen, the window manager calls
the screen manager which calls the display driver:
WinScreenUnlock() calls HALScreenUnlock(), which calls
HALDisplayUnlock().

See Also HALScreenLock
WinScreenUnlock
HALDisplayUnlock

Screen
HALScreenUpdateBitmap

124 DAL Reference
PalmSource Confidential

HALScreenUpdateBitmap Function
Purpose This function updates the screen bitmap when an application

changes the screen depth. It sets the bitmap’s geometry, depth, and
color attributes. The screen bitmap is a BitmapTypeV3.

Prototype Err ScrUpdateScreenBitmap(UInt16 depth)

Parameters depth
Depth in bits per pixel or 0 to preserve.

Returns 0
If no error.

Comments HALScreenMgr.c

The screen colorTable is not initialized here, but rather is
initialized in a separate call to HALScreenPalette().

This function is called by WinScreenMode().

See Also HALScreenPalette
WinScreenMode

Blitter Functions
The blitter for the current DAL fully supports double-density screen
display. By double-density, we mean a screen display that is 320 x 320
pixels, which is double the 160 x 160 pixel screen of the original
Palm OS devices. The functions are presented in alphabetical order.

HALDraw_Bitmap Function
Purpose Function for copying bits from a source bitmap to a target bitmap.

This generic function is used to transfer the contents of a rectangular
area of a source bitmap to another rectangular area in a target
bitmap.

Screen
HALDraw_Bitmap

DAL Reference 125
PalmSource Confidential

Prototype Err HALDraw_Bitmap (CanvasType *canvasP,
BltBitmapType *srcBitmapP,
RectangleType *dstClippedP, Int16 offsetX,
Int16 offsetY)

Parameters → canvasP
The canvas contains the graphics state of the windows, and is
passed to all blitter functions.

→ srcBitmapP
The bitmap of the source window passed to
WinCopyRectangle. Bitmap to be copied to the target
specified in canvasP. If the compressed bit is set in the
source window flags, this routine will automatically
decompress the source bitmap as it copies it to the
destination.

→ dstClippedP
The clipping bounds of the destination bitmap. Do not write
outside this destination rectangle. If the compressed bit is set
in the destination window flags, this routine will
automatically compress the source bitmap as it copies it to
the destination.

→ offsetX
Offset each of the source’s scaled pixels by this much in the x
direction.

→ offsetY
Offset each of the source’s scaled pixels by this much in the y
direction.

Returns 0
If no error.

Comments HALDrawing.c

This routine can decompress, scale, color match, depth convert,
offset, and clip pixels while moving them to a destination with one
of 5 transfer modes and optional halftoning.

The blitter assumes that the rectangle that it is being asked to
display is readable. In other words, the blitter honors the clipping
defined in the source window’s data structure.

Scaling of the source bitmap is independent of destination location.

See Also HALDraw_Rectangle

Screen
HALDraw_Chars

126 DAL Reference
PalmSource Confidential

HALDraw_Chars Function
Purpose This function is the font blitting routine.

Prototype void HALDraw_Chars (const CanvasType* canvasP,
Coord toX, Coord toY, const Char* charsP_in,
Int16 len, FontPtr fontP, FontMapPtr fontMap,
DrawCharCheckPro charCheckProc)

Parameters → canvasP
The canvas contains the graphics state of the windows, and is
passed to all blitter functions. It indicates where and how the
characters will be rendered.

→ toX
The x coordinate of the upper left corner of the first character
to blit.

→ toY
The y coordinate of the upper left corner of the first character
to blit.

→ charsP
The characters to blit. (May be multi-byte.)

→ len
Number of bytes. (Characters may be multi-byte.)

→ fontP
Font to use.

→ fontMap
Font metrics.

→ charCheckPro
Callback function used to verify potentially invalid
characters.

Returns None.

Comments HALDrawing.c

There is no need to pre-clip the input characters, as this routine can
do it as efficiently as any other.

See Also HALDraw_Chars

Screen
HALDraw_FindIndexes

DAL Reference 127
PalmSource Confidential

HALDraw_FindIndexes Function
This function will go through numEntries (starting from 0) of the
matchColorsP table, matching the RGB values to the closest index
in the refColorTableP table (which is the current color lookup
table, or CLUT). For each specified entry of the match color table,
this function sets the index field to the index of the entry in the
reference color table that constitutes the best fit value.

Prototype Err HALDrawFindIndexes(UInt16 numEntries,
RGBColorType *matchColorsP,
const ColorTableType *refColorTableP)

Parameters → numEntries
The number of entries in the table to be matched.

↔ matchColorsP
Color entries to find matches for.

→ refColorTableP
The CLUT. It is the Reference color table to match colors
against. If NULL, use the table stored in the screen globals.

See “RGBColorType” on page 113 for more information about the
RGBColorType data type.

See “ColorTableType” on page 109 for more information about the
ColorTableType and RGBColorTypedata types.

Returns 0
If no error.

Comments HALDrawing.c

Replaces BltFindIndexes() function from the HAL API for Palm
OS 4.0.

This function is called by WinRGBToIndex() in blitter. In the
source code comments, you may see the term “screen globals.” Keep
in mind that the screen globals represent the hardware palette.

See Also HALDraw_FindIndexes

Screen
HALDraw_GetPixel

128 DAL Reference
PalmSource Confidential

HALDraw_GetPixel Function
Purpose This function returns the pixel value of the specified x,y coordinate

in the given bitmap.

Prototype UInt32 HALDraw_GetPixel (const CanvasType* canvas,
Coord x, Coord y, Boolean asIndex)

Parameters → canvas
A pointer to a Palm OS structure defining the location of the
bitmap containing the pixel.

→ x
x-coordinate of pixel.

→ y
y-coordinate of pixel.

→ asIndex
True or false. See Results section below.

Returns Value of pixel. If asIndex is true, return value is an index into the
CLUT (color lookup table). If asIndex is false, return is a 16-bit
pixel value, encoded as a 5-6-5 RGB.

Comments HALDrawing.c

See Also HALDraw_GetPixel

HALDraw_Line Function
Purpose Function for drawing lines.

Prototype Err HALDraw_Line(const CanvasType *CanvasP,
Int16 x1, Int16 y1, Int16 x2, Int16 y2,
Int16 PenWidth)

Parameters → iCanvas
The canvas contains the graphics state of the windows, and is
passed to all blitter functions.

→ x1
x-coordinate of the start of the line.

→ y1
y-coordinate of the start of the line.

Screen
HALDraw_Pixels

DAL Reference 129
PalmSource Confidential

→ x2
x-coordinate of the end of the line.

→ y2
y-coordinate of the end of the line.

→ penWidth
Width (or height) of pen. For lines moving in a horizontal or
mostly-horizontal direction, this gives the height of the line--
pixels extend below the pen location to add fullness. For lines
moving in a vertical, or mostly-vertical, or a 45-degree
direction, this gives the width of the line—pixels extend to
the right of the pen location to add fullness.
A value of 1 is consistent with the older (single-density)
blitters and produces a thin line.
A value of 2 allows low-density applications to draw
appropriately-thick lines on a double-density display.

See “CanvasType” on page 108 for more information about the
CanvasType data type. It contains the graphics state of the
windows, and is passed to all blitter functions.

Returns None.

Comments HALDrawing.c

Coordinate points are inclusive.

The clipping in Palm OS 5 has changed. Briefly put, clipping
determines if a given pixel is drawn or not. Clipping does not have
any effect on which pixels are chosen to represent a line.

See Also HALDraw_Line

HALDraw_Pixels Function
Purpose Function for drawing a pixel.

Prototype void HALDraw_Pixels (const CanvasType* canvasP,
Int16 numPoints, const PointType* pts,
Int16 penWidth)

Parameters → canvasP
The canvas contains the graphics state of the windows, and is
passed to all blitter functions. It indicates where and how the
pixel(s) will be rendered.

Screen
HALDraw_Rectangle

130 DAL Reference
PalmSource Confidential

→ numPoints
of points in the array

→ pts
Constant pointer to an array of PointType

→ penWidth
When penWidth is more than 1, the routine actually draws
little squares that extend down and to the right.

Returns None.

Comments HALDrawing.c

This function is used to draw pixels. A single pixel can be drawn
using a numPoints value of 1. Internally, the blitter may use
different algorithms when the number of pixels to draw is
large.Drawing multiple pixels at once with a single call is always
faster than calling the blitter repeatedly.

See Also HALDraw_Pixels

HALDraw_Rectangle Function
Purpose Function for rendering filled or framed rectangles, including

rectangles with rounded corners.

Prototype void HALDraw_DrawRectangle (
const CanvasType* canvasP,
const RectangleType* rectP, Coord radius,
Coord penWidth)

Parameters → canvasP
The canvas contains the graphics state of the windows, and is
passed to all blitter functions. It indicates where and how the
rectangle will be rendered.

→ rectP
Rectangle to be drawn

→ radius
Radius of curvature for the rectangle’s corners, in pixels.

→ penWidth
If this value is 0, the rectangle will be filled. If this value is a
positive integer, the rectangle will have a frame whose width
is that value. Outsetting the rectangle parameter by the

Screen
HALDrawInit

DAL Reference 131
PalmSource Confidential

penWidth will cause the framed rectangle to be drawn
completely and precisely outside the filled rectangle version,
a feature used when drawing push buttons. The foreColor,
backColor, transferMode, and pattern are all used.

Returns None.

Comments HALDrawing.c

This routine never draws pixels outside the input rectangle.

The current blitter never draws a pixel more than once while blitting
a rounded rectangle.

See Also HALDraw_Rectangle

HALDrawInit Function
Purpose This function initializes blitter globals.

Prototype Err HALDrawFindIndexes(UInt16 numEntries,
RGBColorType *matchColorsP,
const ColorTableType *refColorTableP)

Parameters None.

Returns None.

Comments HALDrawing.c

Called by HALScreenInit().

See Also HALScreenInit

Screen
HALDrawInit

132 DAL Reference
PalmSource Confidential

DAL Reference 133
PalmSource Confidential

15
Sound Support
This chapter describes the HAL sound functions. These functions
are called by the Palm Sound Manager.

The most important part of the HAL sound implementation is the
sound mixer. This is software that’s expected to accept as many as
16 streams of stereo sampled data, and mix them into a single
(stereo) output signal that can be sent to the device’s sound
hardware (speakers, headphone jack, line-out jacks, etc.). The HAL
is also expected to produce a single stereo input signal by reading
data from a microphone, line-in jack, or other input device.

Each of the output streams (created through HALSoundOpen)
supply data to the Sound Manager as a series of buffers that are
retrieved through callback functions. More specifically, the Sound
Manager calls into application code, passing a buffer that the
callback is expected to fill with sound data. The Sound Manager
then passes these buffers to the HAL by calling HALSoundWrite,
which function is responsible for scooping out the sound data and
dumping it into a given stream.

NOTE: The HAL isn’t required to always be able to supply 16
output streams. In the sample implementation for Palm OS 5, for
example, there are sufficient system resources to only create 15
streams. Sound Manager users will be warned that the number of
available output streams isn’t guaranteed.

On the input side, the HAL must produce the “next” buffer of
sound data when the Sound Manager calls HALSoundRead. The
function is passed a buffer into which it writes data that was read
from an input device.

The HAL also includes functions that support legacy square wave
sound generation: HALSoundPlay, HALSoundOff

Palm OS 5 provides a sample implementation of the HAL sound
functions, including a sound mixer, in HALSound.cpp.

Sound Support
HAL Sound Structures and Constants

134 DAL Reference
PalmSource Confidential

All elements described here are declared in HALSound.h.
A sample implementation is given in.
Samples\LubbockRef\Src\HALSound.cpp.

HAL Sound Structures and Constants

HALSndIoctlCmds Enum
Purpose These enumerated constants represent the commands that the

HALSoundIoctl function is expected to handle.

Prototype enum HALSndIoctlCmds
{
CMD_SETFORMAT,
CMD_SETVOLUME,
CMD_GETVOLUME,
CMD_SETPAN,
CMD_GETPAN,
CMD_ALLOCSTREAMBUFFERS,
CMD_STOP

};

Comments See HALSoundIoctl for information on the commands that these
constants represent.

HALSoundAllocStreamBufType Typedef
Purpose Structure that contains the data buffers used in sampled sound

streams.

Prototype typedef struct
{
Int32 size;
char *buf[2];

} HALSoundAllocStreamBufType;

Fields size
Size of the data buffers (all buffers must be the same size).

Sound Support
HALSoundInitStreamType

DAL Reference 135
PalmSource Confidential

buf
Array of pointers to the data buffers. Currently, only double-
buffering is allowed.

Comments When executing the CMD_ALLOCSTREAMBUFFERS command,
the HALSoundIoctl function expects its final argument to be a
pointer to a HALSoundAllocStreamBufType structure.

HALSoundInitStreamType Typedef
Purpose Describes the format of a sound stream; used by the

Prototype typedef struct
{
UInt32 samplerate;
SndSampleType type;
SndStreamWidth width;

} HALSoundInitStreamType;

Fields samplerate
Sampling rate in frames-per-second. The Sound Manager
allows sampling rates up to 96000.

type
A constant that represents the sample quantization and
endianness. The SndSampleType constants, defined in
SoundMgr.h, are described in the Sound Manager chapter of
the Palm OS Reference manual.

width
A constant that represents the number of audio channels;
either sndMono (one channel) or sndStereo (two channels).

Comments When executing the CMD_SETFORMAT command, the
HALSoundIoctl function expects its final argument to be a pointer
to a HALSoundInitStreamType structure.

Sound Support
HAL Sound Support Functions

136 DAL Reference
PalmSource Confidential

HAL Sound Support Functions

HALPlaySmf Function
Purpose Generates a series of simple square wave tones whose frequencies,

amplitudes, and (implied) durations are defined in a Standard MIDI
File.

Prototype Err HALPlaySmf (void *chanP, SndSmfCmdEnum cmd,
UInt8 *smfP, SndSmfOptionsType *optP,
SndSmfChanRangeType *chanRangeP,
SndSmfCallbacksType *callbacksP,
Boolean bNoWait)

Returns Returns 0 if the request was handled, and non-zero otherwise. See
the Comments, below, for more information.

Comments This function is an implementation of the SndPlaySmf function.
For descriptions of what the parameters mean and how the function
is expected to behave see SndPlaySmf in the “Sound Manager”
chapter of Palm OS Programmer’s API Reference.

With regard to return values, HALPlaySmf can either handle the
request and return 0, or it can punt by returning any other value. In
the latter case, the Sound Manager opens and decodes the MIDI file
itself and issues a series of HALSoundPlay/HALSoundStop calls to
play the MIDI data.

If the caller requested the SMF duration and your implementation
returns non-zero, the Sound Manager handles the entire operation
without calling into the HAL.

HALSoundClose Function
Purpose Closes a sampled sound stream.

Prototype Err HALSoundClose (Int32 streamRef)

Parameters → streamRef
Stream identifier for the stream that wants to be closed.

Returns Returns 0 upon success; otherwise non-zero.

See Also HALSoundOpen

Sound Support
HALSoundIoctl

DAL Reference 137
PalmSource Confidential

HALSoundDispose Function
Purpose Called by the system to shut down and clean up the sound facilities.

Prototype Err HALSoundDispose (void)

Returns The function returns 0 upon success, and non-zero otherwise.

Comments The sample implementation uses this function to shut down and
destroy the sound mixer, and unload the sound driver.

See Also HALSoundInitialize

HALSoundInitialize Function
Purpose Called at startup to initialize the sound facilities.

Prototype Err HALSoundInitialize (void)

Returns The function returns 0 upon success, and non-zero otherwise.

Comments The sample implementation uses this function to load the sound
driver, initialize the sound mixer, and create the task in which the
mixer runs.

See Also HALSoundDispose

HALSoundIoctl Function
Purpose Sets/gets attributes of a sound stream.

Prototype Err HALSoundIoctl (Int32 streamRef,
Int32 command, void *data);

Parameters → streamRef
Cookie that identifies the sound stream, as returned by
HALSoundOpen.

→ command
Constant that represents the requested command. One of the
HALSndIoctlCmds values.

↔ data
Command-specific data

Returns errNone
Success.

Sound Support
HALSoundIoctl

138 DAL Reference
PalmSource Confidential

sndErrMemory
Not enough memory to allocate the data buffers
(CMD_ALLOCSTREAMBUFFERS).

sndErrBadParam
Invalid format (CMD_SETFORMAT) or setting value
(CMD_SETVOLUME and CMD_SETPAN).

Comments The HALSndIoctlCmds constants and their associated data values
are described somewhere near here:

• CMD_SETFORMAT. Sets the stream’s sound format. The data
is a pointer to a HALSoundInitStreamType structure that
describes the desired format.

• CMD_SETVOLUME. Sets the stream’s volume in the range [0,
1024], where 0 is inaudible and 1024 is full volume. The data
is the requested volume as a UInt32.

• CMD_GETVOLUME. Returns, by reference in data, the
stream’s current volume as a UInt32.

• CMD_SETPAN. Sets the stream’s stereo placement in the range
[-1024, 1024] from hard left to hard right. The data is the
requested pan setting as a UInt32.

• CMD_GETPAN. Returns, by reference in data, the stream’s
current stereo pan setting as a UInt32.

• CMD_ALLOCSTREAMBUFFERS. Allocates the stream’s sound
data buffers. The data is a pointer to a
HALSoundAllocStreamBufType structure that indicates
the desired buffer size (in its size field), and passes an array
of (unallocated) buffer pointers. The function allocates
memory for the buffers, using the size indication as a
suggestion (all buffers in a single stream must be the same
size). The function then resets data->size to the allocated
size of a single buffer.

• CMD_STOP. This command is issued whenever
SndStreamStop is called. There is no parameter block for
this comand; the value of data is undefined.

Sound Support
HALSoundOpen

DAL Reference 139
PalmSource Confidential

HALSoundOff Function
Purpose Stops playing the current sound.

IMPORTANT: This function must never block.

Prototype Err HALSoundOff (void)

Returns Returns 0 upon success; otherwise non-zero.

Comments Any sound previously started through HALSoundPlay is stopped.
Stream sounds (generated through HALSoundWrite) aren’t
affected.

Compatibility Replaces the HwrSoundOff() function from the HAL API for Palm
OS 4.0.

See Also HALSoundPlay

HALSoundOpen Function
Purpose Opens a new sampled sound stream (input or output) and returns

an identifier that represents the open stream.

Prototype Int32 HALSoundOpen (Char *device, int flags,
Err *error)

Parameters → device
Specifies the stream’s direction. Either halSoundADC (input)
or halSoundMixer (output).

→ flags
Currently unused.

← error
Used to return the function’s status.

Returns The function itself returns a stream identifier, where a valid
identifier is greater than zero. If the function returns 0 (or a negative
number), the stream was not opened. The error argument is set to a
indicative code, typically one of the following.

errNone
Success.

Sound Support
HALSoundPlay

140 DAL Reference
PalmSource Confidential

sndErrMemory
Couldn’t allocate required resources.

See Also HALSoundClose

HALSoundPlay Function
Purpose Generates a tone with a given frequency, amplitude, and duration.

Prototype Err HALSoundPlay (UInt32 frequency,
UInt16 amplitude, UInt32 duration)

Parameters → frequency
Frequency in Hz.

→ amplitude
Amplitude in the range [0, sndMaxAmp].

→ duration
Duration in milliseconds.

Returns Returns 0 upon success; otherwise non-zero.

Comments The sample implementation generates a square wave tone, in
emulation of a traditional small-device hardware tone generator.
Only one tone can be produced at a time.

Compatibility Replaces the HwrSoundOn() function in the HAL API for Palm OS
4.0.

See Also HALSoundOff

HALSoundRead Function
Purpose This is the sound recording function: It reads data from an open

input sound stream and places it in a caller-defined buffer.

Prototype Int32 HALSoundRead (Int32 streamRef,
void *buffer, Int32 bufferSize, Err *error)

Parameters → streamRef
Stream identifier for the stream that wants to be read from.

← buffer
Buffer into which the data is placed.

→ bufferSize Size of buffer, in bytes.

Sound Support
HALSoundWrite

DAL Reference 141
PalmSource Confidential

← error
Error code.

Returns The function returns the number of bytes read; the error status is
returned in error. A positive return indicates success, and error
is set to errNone. A direct return of 0 means nothing was read, and
error is set to an error code, including:

sndErrInvalidStream
streamRef isn’t open, or is otherwise invalid.

sndErrBadParam
The buffer size is incompatible with the size of the stream’s
data buffers.

See Also HALSoundOpen, HALSoundWrite

HALSoundSleep Function
Comments Currently unused.

HALSoundWake Function
Comments Currently unused.

HALSoundWrite Function
Purpose This is the sound playback function: It takes sound data from a

caller-supplied buffer and writes it into an open output sound
stream.

Prototype Int32 HALSoundWrite (Int32 streamRef,
void *buffer, Int32 bufferSize, Err *error)

Parameters → streamRef
Stream identifier for the stream that wants to be written to.

→ buffer
Buffer from which the data is taken.

→ bufferSize
Size of buffer, in bytes.

Sound Support
HALSoundWrite

142 DAL Reference
PalmSource Confidential

← error
Error code.

Returns The function returns the number of bytes written; the error status is
returned in error. A positive return indicates success, and error
is set to errNone. A direct return of 0 means nothing was written,
and error is set to an error code, including:

sndErrInvalidStream
streamRef isn’t open, or is otherwise invalid.

See Also HALSoundOpen, HALSoundRead

DAL Reference 143
PalmSource Confidential

16
Timer Support
This chapter describes the API functions of the HAL that deal with
the timer. They are described in alphabetical sequence.

For more information about the Time Manager, see the Palm OS
Programmer’s Companion and the Palm OS Programmer’s API
Reference.

Timer Support Data Structures
None applicable.

Timer Support Functions

HALDelay Function
Purpose Waits for the given amount of time.

Prototype void HALDelay(UInt32 microseconds)

Parameters microseconds
The number of microseconds to wait.

Returns None.

Comments CTLTimer.c

This function is called by various hardware routines and may be
called from within an interrupt handler.

Replaces HwrDelay() function from the HAL API for Palm OS 4.0.

Timer Support
HALDelay

144 DAL Reference
PalmSource Confidential

PalmSource Confidential

Part II
Kernel Hardware
Abstraction Layer
(kHAL)

PalmSource Confidential

DAL Reference 147
PalmSource Confidential

17
kHAL Functions
The kHAL functions are called by the kernel to initialize registers,
set up tasks, check system state, and so on. Many of these functions
are platform-dependent: When Palm OS 5 is ported to a new ARM
platform, the kHAL functions must be re-visited to see if their
implementations need to be altered (or completely rewritten) to
match the new hardware.

The kHAL portion of the sample implementation is in:

Development Kit\Samples\LubbockRef\kHAL\Src\

Overview
The kHAL functions fall into three groups:

• The CPU-specific functions exhibit direct control over the
CPU:

– kHAL_DisableInt disables IRQ interrupts.

– kHAL_EnableInt re-enables IRQ interrupts.

– kHAL_CPULock “locks” the CPU, presumably for
uninterrupted execution of a critical section. (Currently a
no-op.)

– kHAL_CPUUnlock is the antidote to kHAL_CPULock.
(Currently a no-op.)

– kHAL_Doze conserves power by halting the CPU until
the next interrupt.

• The system initialization functions are called during the
boot sequence (only). In the order that they’re called, they
are:

– kHAL_Init initializes the CPU vectors.

kHAL Functions
Overview

148 DAL Reference
PalmSource Confidential

– kHAL_RegisterInterruptHandler installs a
software interrupt handler for a particular device. (This
may be called more than once during the boot sequence.)

– kHAL_SwitchToFirstTask performs a context switch
to the first task (the main kernel task).

• The multi-tasking functions are used to manage a context
switch:

– kHAL_CreateInitialTaskContext sets up the
context for a freshly created task (any freshly created task,
not just the system’s first task).

– kHAL_SetTaskReturnValue sets the return value for a
task that has timed out.

NOTE: If you poke around in the sample kHAL implementation,
you’ll also see kHAL_CheckIdle and
kHAL_CheckContextSwitchNeeded. These aren’t actual kHAL
functions; they’re part of the SWI handler implementation that’s
provided with the sample. There’s no reason to reimplement
these functions.

Only the CPU-specific functions need to be (wholly) reimplemented
for each CPU.

The other functions are “kernel-specific”: Their implementations are
highly dependent on the structure of the kernel (Palm OS Kernel
1.0). Since you can’t change the kernel, you should always include
the sample code for the kernel-specific kHAL functions in your own
implementations.

The individual kHAL functions are described below, listed in
recognizably alphabetical order.

kHAL Functions
kHAL_CPUUnlock

DAL Reference 149
PalmSource Confidential

kHAL Functions

kHAL_CPULock Function

IMPORTANT: kHAL_CPULock is provided for completeness,
but is currently a no-op. Don’t bother re-implementing it.

Purpose Locks the CPU so that the current task can’t be switched out. The
lock is released by kHAL_CPUUnlock.

Declared In (none)

Samples\LubbockRef\kHAL\Src\KernelCall.c

Prototype ER kHAL_CPULock (UInt32 *cpsr)

Parameters cpsr
A pointer to the value of the caller's CPSR.

kHAL_CPUUnlock Function

IMPORTANT: kHAL_CPUUnlock is provided for completeness,
but is currently a no-op. Don’t bother re-implementing it.

Purpose Undoes the effect of a previous kHAL_CPULock, allowing the
currently locked-in task to be switched out.

Declared In (none)

Example Samples\LubbockRef\kHAL\Src\KernelCall.c

Prototype ER kHAL_CPUUnlock (UInt32 *cpsr)

Parameters cpsr
A pointer to the value of the caller's CPSR.

Result The return value is ignored.

kHAL Functions
kHAL_CreateInitialTaskContext

150 DAL Reference
PalmSource Confidential

kHAL_CreateInitialTaskContext Function
Purpose Creates the context for a freshly minted task. Called every time a

new task is created.

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example. Samples\LubbockRef\kHAL\Src\KHAL.c

Prototype void kHAL_CreateInitialTaskContext (TCB *task,
Int32 startCode)

Parameters task
A pointer to the Task Control Block for the new task.

startCode
Argument data that’s passed to the task’s entry function.

Comments The sample implementation pushes function call data onto the
task’s stack, and sets up the task’s “saved context” area. You must
include the sample implementation code in your own
implementation of this function.

kHAL_DisableInt Function
Purpose Disables interrupts. Interrupts remain disabled until

kHAL_EnableInt is called.

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\IRQ_A.s

Prototype void kHAL_DisableInt (void)

Comments The sample implementation disables IRQ interrupts, but not FIQ
interrupts.

kHAL_Doze Function
Purpose Halts the CPU until the next interrupt occurs. The sole purpose of

this function is to conserve power.

kHAL Functions
kHAL_RegisterInterruptHandler

DAL Reference 151
PalmSource Confidential

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\kHAL_A.s

Prototype void kHAL_Doze (void)

kHAL_EnableInt Function
Purpose Re-enables interrupts, undoing the effect of a previous

kHAL_DisableInt.

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\IRQ_A.s

Prototype void kHAL_EnableInt (void)

kHAL_Init Function
Purpose Initializes the CPU’s interrupt vectors. Called once during the boot

sequence.

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\KHAL.c

Prototype void kHAL_Init (void)

Comments If you want to base your version on the sample implementation,
note the following: For convenience, the sample DAL includes a
kHAL_Init helper function, PrvInstallHandler, that does the
actual vector initialization. If you use PrvInstallHandler, you
should modify the code so that it always takes the branch that looks
like this:

GHwrExceptionHandlers[vector] = routine;

kHAL_RegisterInterruptHandler Function
Purpose Adds a hardware interrupt handler to the dispatch table.

kHAL Functions
kHAL_SetTaskReturnValue

152 DAL Reference
PalmSource Confidential

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\IRQ.c

Prototype ER kHAL_RegisterInterruptHandler (
UInt32 interruptID,
FP interruptHandler, void *handlerArg)

Parameters interruptID
A number that uniquely identifies the device that you want
this handler to handle.

interruptHandler
The address of the (APCS-compatible) interrupt routine.

handlerArg
The address of a data area for the interrupt routine.

Result The sample implementation returns the following; your
implementation should follow suit:

E_OK
Success.

E_PAR
Bad interruptID value. The sample implementation pre-
installs the first three interrupt handlers (for FIQ, IRQ, and
ABORT interrupts); an attempt to overwrite these handlers is
thwarted, and E_PAR is returned.

Comments You should only need to implement this function if you’re
redesigning the dispatch table.

kHAL_SetTaskReturnValue Function
Purpose Sets the return value for a task that has timed out.

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\KHAL.c

Prototype void kHAL_SetTaskReturnValue (UInt32 *savedContext,
Int32 returnValue);

Parameters savedContext
A pointer to the task’s context array.

returnValue
The return value suggested by the kernel.

kHAL Functions
kHAL_SwitchToFirstTask

DAL Reference 153
PalmSource Confidential

Comments The sample implementation stuffs the returnValue into the
task’s return register (r0—this is the second element in the
savedContext array. The entire implementation looks like this:

savedContext[1] = returnValue;

It’s recommended that you use this implementation without
modification. In this implementation, the returnValue is always
E_TMOUT, the error code that indicates that the task has timed out.

kHAL_SwitchToFirstTask Function
Purpose Jump starts the task switching mechanism by stuffing data into the

context area, and then switching to that context.

Declared In Palm_OS_DAL_Support\Kernel\MCK\KernelPrv.h

Example Samples\LubbockRef\kHAL\Src\KHAL_A.s

Prototype void kHAL_SwitchToFirstTask (
UInt32 *savedContext)

Parameters savedContext
A pointer to the context of the task that’s being switched to.
This context is created by the kernel; you probably don’t
want to mess with it.

Comments The sample implementation moves the argument into r2, and then
calls a kernel routine (RestoreTaskContext) that performs the
actual context switch.

kHAL_SwitchToFirstTask is always called near the end of the
boot process; it’s passed a context that represents the main kernel
task.

kHAL Functions
kHAL_SwitchToFirstTask

154 DAL Reference
PalmSource Confidential

PalmSource Confidential

Part III
Kernel Abstraction
Layer (KAL)

PalmSource Confidential

DAL Reference 157
PalmSource Confidential

18
The KAL
The Kernel Abstraction Layer (KAL) is a set of functions that let you
create and manage resources (or, as we call them here, “objects”)
that represent fundamental kernel functionality, such as tasks,
mutual exclusion locks, inter-process communication, and so on.

You invoke the KAL functions in your HAL and kHAL
implementations. The KAL functions can’t be reimplemented.

Kernel Object Types
There are six kernel object types: tasks, mutexes, semaphores, event
groups, mailboxes, and timers:

• An additional KAL chapter, Chapter 19, “KAL Generic API,”
on page 161, lists and explains the KAL error codes and other
constants that apply to more than one kernel object.

• A task is an independent thread of execution. See Chapter 20,
“Tasks,” on page 165.

• A mutex is “one task at a time” lock that’s typically used to
protect non-reentrant code. See Chapter 22, “Mutexes,” on
page 191.

• A semaphore is a task synchronization object; it’s similar to a
mutex, but is much more flexible. Semaphores are typically
used to coordinate dependent tasks. See Chapter 21,
“Semaphores,” on page 185.

• An event group is a “conditional” task synchronization
object. It lets you define an arbitrary set of conditions that
must be met before a task is allowed to continue execution.
See Chapter 23, “Event Groups,” on page 197.

• A mailbox is an inter-process message queue. See Chapter 24,
“Mailboxes,” on page 205.

The KAL
Object Count Limits

158 DAL Reference
PalmSource Confidential

• A timer object lets you ask the the kernel to invoke functions
on your behalf. You typically use timers to perform periodic
checks on the system. See Chapter 25, “Timers,” on page 211.

Object Count Limits
The number of (simultaneous) kernel objects that can be created
across the entire system is limited by the values set in the
KernelConfig.h file. These limits are:

• Tasks: 32

• Mutexes: 64

• Semaphores: 64

• Event groups:16

• Mailboxes:16

• Timers: 24

Note that the system itself creates and uses some number of these
objects. For example, you code won’t be able to create 31 tasks (32
minus the calling task) because of the handful of tasks—such as the
timer task and the kernel task itself—that are hardwired into the
system.

The limits defined in KernelConfig.h are currently
unmodifiable.

Object ID Numbers
Each kernel object is identified by an ID number that’s
contemporaneously unique for the object’s type. As long as the object
exists, it’s ID number won’t collide with any other object of the same
type.

However, ID numbers aren’t persistently unique. After you delete an
object, some other newly created object (of the same type) may take
on the old object’s ID. Because of this, you must be careful when you
cache a kernel object ID number.

Object ID number values have no significance by themselves. The
value doesn’t even signify the object’s type: For example, a task

The KAL
Object ID Numbers

DAL Reference 159
PalmSource Confidential

object, semaphore object, mutex object (and so on), can all have the
same ID value.

For all objects, value 0 is invalid.

The KAL
Object ID Numbers

160 DAL Reference
PalmSource Confidential

DAL Reference 161
PalmSource Confidential

19
KAL Generic API
This section lists the KAL constants that are used by (potentially) all
the KAL object types. It also describes the two KAL startup
functions (KALInit and KALStart) that are called by the system.
Note that these functions are described here for information only;
you should never call these functions yourself.

KAL Generic Constants

KAL Error Constants
Purpose Error codes that are returned by the KAL functions. For all KAL

functions, a return value of 0 indicates success. Not all of these
constants are unique to the KAL functions—errNone and
kDALTimeout are used by other DAL functions.

Declared In Kernel.h, Common/CmnErrors.h

Constants errNone
Success.

kKALErrBadParam
Argument value not in range.

kKALErrNoFreeResource
No more available objects: All allocated objects of this type
are being used.

kKALErrNoFreeRAM
Not enough memory to create the requested object.

kKALErrInvalidContext
The function can’t be called because task switching is
disabled.

kKALErrSemInUse
Currently unused.

KAL Generic API
KAL Generic Constants

162 DAL Reference
PalmSource Confidential

kKALErrInvalidID
The (argument) ID doesn’t identify a valid object of the
appropriate type. This is essentially the same error as
kKALErrObjectNotExist.

kKALErrObjectDeleted
An object that was blocking the function (a semaphore or
mutex, as examples) was deleted.

kKALErrObjectInvalid
The requested operation is illegal because the object (which
does exist) is in the “wrong state.” This applies, primarily, to
tasks; for example, a task can’t call KALTaskTerminate on
itself.

kKALErrQueueOverflow
The object has (already) reached a queue or nesting limit.

kKALErrWaitReleased
Currently unused.

kKALErrObjectNotExist
The object upon which this function is operating doesn’t
exist. This is essentially the same error as kKALErrInvalidID.

kKALErrNotOwner
The requested operation can only be performed by the
object’s owner. Currently, this is used by KALMutexRelease
only.

kDALTimeout
The function has returned because a timeout limit has
expired.

KAL Timeout Constants
Purpose These constants represent edge-case timeout values, and provide a

convenient “wait a moment” constant. You can pass these constants
to functions that take timeout arguments.

Declared In Kernel.h

Constants kTimeoutWaitForever
Never timeout—wait forever.

KAL Generic API
KALStart

DAL Reference 163
PalmSource Confidential

kTimeoutPoll
Immediate timeout; the calling function returns immediately.
You use this if you need a resource but you aren’t willing to
wait for it.

kTimeout1Second
Timeout for one second. Convenient—and only 11 keystrokes
longer than typing “1000”.

KAL Startup Functions
The following functions are invoked during the boot sequence to
initialize and start the kernel. As mentioned above (and as we’ll
constantly remind you, below), you never call these functions
yourself; and, like the rest of the KAL, you can’t reimplement them.
They’re described here in the interest of satisfying the curious.

KALInit Function
Purpose Initializes the kernel. The other KAL functions are no-ops until

KALInit has been called. Called during the boot sequence—you
never invoke this function yourself.

Declared In Kernel.h

Prototype void KALInit (void)

KALStart Function
Purpose Starts the main kernel task running (which enables multi-tasking),

and then starts an additional task. Called during the boot
sequence—you never invoke this function yourself.

Declared In Kernel.h

Prototype void KALStart (void *additionalTaskProc)

Parameters additionalTaskProc
Entry point for the “additional task.” In its invocation during
the boot sequence, the entry point is PalmOSMain—this is
the function that start the Palm OS running (and which
function never returns).

KAL Generic API
KALStart

164 DAL Reference
PalmSource Confidential

DAL Reference 165
PalmSource Confidential

20
Tasks
A task is a thread of execution. Every task has its own stack and
execution context. All tasks run pseudo-concurrently; the kernel
schedules the execution of a task based on its numeric priority (as
compared to other tasks) and its task state. The task state signifies
whether the state is ready to run, sleeping, waiting for some other
object (such as a semaphore or mutex), and so on.

Creating, Starting, and Stopping a Task
New tasks can be created through the KALTaskCreate function.
After it’s created, the task is “dormant” until told to run through
KALTaskStart. The task executes its “entry point function” and
we’re off to the races.

If the task reaches the end of its entry point function (i.e. if the entry
point function returns) the task exits and returns to the dormant
state. The task can then be restarted through another
KALTaskStart call, or you can delete it through KALTaskDelete.
While it’s running, you can force a task to exit by calling
KALTaskExit; as with “natural” exiting, forcing a task to exit
places it in the dormant state, from which it can be restarted or
deleted.

Synchronizing Tasks
If you want your task to play with other tasks, you’ll need to
synchronize their operations. For example, if you have a task that
writes a buffer of data, and another that reads the buffer, you’ll need
to make the reader task wait until the writer task has filled the
buffer, and then make the writer wait until the reader has “emptied”
it.

Most of the other KAL objects let you perform this sort of
synchronization. In particular, mutexes and semaphores are

Tasks
Synchronizing Tasks

166 DAL Reference
PalmSource Confidential

designed specifically to synchronize tasks. In general, if you have a
synchronization issue you should try to use mutexes and
semaphores to solve it. (Event groups and mailboxes can also be
used, although these are slightly more complicated objects.)

Nonetheless, the task API provides functions that can manipulate a
task’s state directly. These are described below.

Delaying
You can delay a (running) task’s operation by calling
KALTaskDelay. This causes the task to pause for some number of
milliseconds before proceeding. When it’s finished delaying, the
task resumes where it left off. This can be useful if your task is
running in a tight polling loop, although you should be careful not
to abuse the technique: Most polling loops are much more efficient
when controlled by a semaphore.

Wait and Wake
You can tell a task to wait (KALTaskWait) until it’s signalled by
some other task to wake up (KALTaskWake). The wait-and-wake
system is a sort of “cheap semaphore.” There are two essential
features in this system:

• A task can be told to wake up before it’s told to wait; waking
a “non-waiting” task causes the task to increment its wakeup
count. If a task has a positive wakeup count when it’s told to
wait, it continues without waiting (and decrements the
wakeup count).

• A calling task can only tell itself to wait—you can’t call
KALTaskWait on some other task. This guarantees that the
waiting task isn’t already waiting.

As an example of how you might use wait-and-wake, let’s say you
have two tasks: task J and task K. You want to synchronize them
such that task J waits at point X until task K has gotten to point Y
(and vice versa). A simple way to do this is to have each task tell the
other to wake up, and then immediately (the task itself) goes to
sleep. The code would look something like this (without error
checking and other details):

Tasks
Synchronizing Tasks

DAL Reference 167
PalmSource Confidential

/* Task J code */
// we’re running and running and running...
// and then we get to ‘Point X’:
KALTaskWake(taskK);
KALTaskWait(...);

The task K code looks exactly the same, modulo the function
argument:

/* Task K code */
// we’re running and running and running...
// and then we get to ‘Point Y’:
KALTaskWake(taskJ);
KALTaskWait(...);

Let’s assume task J gets to point X first (i.e. before K gets to Y).
Here’s what happens:

1. J calls KALTaskWake to tell K to wake up; since K isn’t
waiting, the call increments K’s wakeup count.

2. J then calls KALTaskWait, and so stops its own execution.

3. K finally gets to point Y and calls KALTaskWake on J, which
causes J to return from KALTaskWait.

4. K uses its positive wakeup count to “side step” its own
KALTaskWait (the call doesn’t go away, K enters it and then
immediately returns).

Of course, it’s possible that task K will get to point Y between steps
1 and 2. This isn’t a problem: Both tasks will have positive wakeup
counts by the time they get to their respective KALTaskWait calls.

A simpler example, in which task J regulates task K without
reciprocity, is possible—but the example above points out an
important caveat: If you’re using a reciprocal wait-and-wake (as in
the example), you must call wake before calling wait.

Another important point to keep in mind is that a task can’t
increment it’s own wakeup count: A task can’t call KALTaskWake
on itself.

Tasks
Tasks Lists

168 DAL Reference
PalmSource Confidential

Suspending and Resuming
A final task manipulation mechanism is “suspend and resume.”
You can interrupt a task’s operation by calling KALTaskSuspend,
and then tell it to resume from where it was suspended by calling
KALTaskResume. This sounds similar to wait-and-wake, but
there’s an important difference:

• A task can’t suspend itself, thus there’s no guarantee that the
suspended task won’t already be waiting (or suspended).

• Resumptions can’t be “pre-issued.” If you call
KALTaskResume on a task that’s isn’t suspended, the call is
(essentially) ignored.

Suspending and resuming can be useful when you’re prototyping,
debugging, or profiling code. You should never use suspend-and-
resume to simulate a semaphore, or to otherwise control “real”
code.

Tasks Lists
At any time, a task is either running, or it’s on one of three task lists:

• The ready list contains tasks that are waiting for their turn to
run. The list is ordered by task priority.

• The wait list contains tasks that are blocked in a function call,
waiting for a “signal” in order to continue. The signal can be
the release of a semaphore or mutex, the arrival of a mailbox
message, the invocation of a KALTaskWake call, and so on.
When the signal arrives, the task is moved to the ready list.

• The suspended list contains tasks that have been suspended
through a KALTaskSuspend call. As mentioned above, a
suspended task is “unsuspended” through a
KALTaskResume call. When a suspended task is resumed,
it’s moved back to whichever list it was on when it was
suspended.

The task lists are created and managed by the kernel. Moving tasks
between these lists is the kernel’s business; nonetheless, you should
be aware of the lists as concepts and terms.

Tasks
Priorities and Scheduling

DAL Reference 169
PalmSource Confidential

Priorities and Scheduling
A task’s numeric priority, set when the task is created, is a measure
of the task’s “urgency” as compared to all other tasks. The “most
urgent” task in the ready list is the one that the kernel scheduler,
when it needs to choose a new task, will promote to running status.
(If the currently running task has a higher priority than the tasks in
the ready list, that task will continue to run.)

Priority numbers fall in the range [1, 255], where 1 is the “most
urgent” priority, and 255 is the “least urgent.” For the purposes of
this documentation, a “higher priority” means greater urgency—
which means a numerically smaller priority value.

The priority values themselves are meaningful only in (boolean)
comparison to other tasks’ priorities. Thus, the difference between
priority value 1 and priority value 255 has the same significance as
the difference between, say, 254 and 255: That one priority is
“higher” (i.e. more urgent) than another is the only thing that
matters.

Because the kernel only cares about finding the highest priority
value, it’s possible for a high priority task to “starve” lower priority
tasks. The scheduler isn’t “fair”—it doesn’t auto-degrade a task’s
priority as the task receives cycles, nor does it dole out cycles in
proportion to the tasks’ priorities. It’s up to the task creator to be
responsible about setting an appropriate priority value:

• The default priority is 100. This is used for applications or
other high level modules for which tasks are created
automatically (in other words, in situations where the
module doesn’t get to specify a priority).

• Some of the Palm OS 5 system task priorities are:

– Hot Sync: 90

– Telephony: 80

– Net: 60

– Infrared: 50

– System timer: 5

• Priority 0 is reserved for use by the system.

Tasks
Task Structures, Constants, and Types

170 DAL Reference
PalmSource Confidential

If in doubt, you should stick with priority 100. For background
tasks, choose a lower priority (i.e. > 100). If you’re creating a server,
you may want a higher priority (< 100).

Task Structures, Constants, and Types

Task State Constants Function
Purpose Constants that represent the various states a task can be in.

Declared In Kernel.h

Constants kTaskStateRunning
The task is currently executing.

kTaskStateReady
The task is “running” in the sense that it isn’t waiting,
suspended, or dormant, but it isn’t currently executing.
Instead, it’s queued on the ready list, waiting for its turn to
execute.

kTaskStateWaiting
The task is blocked in a function, waiting for some condition
such as timer expiration, semaphore or mutex release, and so
on. The task is currently on the wait list; when the condition
holds, it will be moved from the wait list to the ready list.

kTaskStateSuspended
The task was running (or on the ready list) when it was
suspended through a KALTaskSuspend call. The only way
to “unsuspend” it is to call KALTaskResume. When it’s
resumed, the task is moved back to the ready list.

kTaskStateWaitSuspend
The task was suspended (through KALTaskSuspend) while
it was on the wait list. When it’s resumed (through
KALTaskResume), it’s moved back to the wait list or, if the
wait condition was met while the task was suspended, it’s
moved to the ready list.

kTaskStateDormant
The task is freshly created and is waiting to be told to run
(KALTaskStart), or it has already run and has been told to

Tasks
Task Wait Cause Constants

DAL Reference 171
PalmSource Confidential

exit (KALTaskExit). While it’s dormant the task does
nothing.

Comments A task’s state is recorded in the taskState field of its
KALTaskInfoType structure, which you can retrieve through the
KALTaskGetInfo function. You can look at taskState for
debugging or profiling purposes, but you should never predicate
“real” code based on a task’s state. The state is constantly changing;
by the time you return from KALTaskGetInfo, the task may have
changed state.

Task Wait Cause Constants Function
Purpose Constants that represent the various reasons that a task is waiting

(i.e. its state is kTaskStateWaiting or
kTaskStateWaitSuspend).

Declared In Kernel.h

Constants kTaskWaitCauseWait
The task was told to wait by a KALTaskWait call.

kTaskWaitCauseDelay
The task is waiting for a delay time limit to expire. See
KALTaskDelay.

kTaskWaitCauseEventGroup
The task is waiting for an event group to match the task’s
event pattern. See Chapter 23, “Event Groups.”

kTaskWaitCauseSemaphore
The task is waiting for a semaphore to be released. See
Chapter 21, “Semaphores.”

kTaskWaitCauseMailbox
The task is trying to write to a full mailbox, or read from an
empty mailbox. See Chapter 24, “Mailboxes.”

kTaskWaitCauseMutex
The task is waiting for a mutex to be released.See Chapter 22,
“Mutexes.”

Tasks
KALTaskCreateParamType

172 DAL Reference
PalmSource Confidential

KALTaskCreateParamType Function
Purpose Repository for information that you supply when you create a new

task.

Declared In Kernel.h

Prototype typedef struct KALTaskCreateParamType {
void *exinf;
KALTaskProcPtr taskProc;
UInt32 stackSize;
UInt32 priority;
UInt32 tag;

} KALTaskCreateParamType;

Fields exinf
A pointer to “extended information” that can be supplied to
the task. The data that exinf points to is passed as an
argument to the task’s entry point function.

taskProc
The task’s entry point function. This is the function that’s
called when the task is told to start (KALTaskStart).

stackSize
The desired size of the task’s stack, in bytes.

priority
The desired priority of the task, in the range [1, 255], where 1
is the highest (most urgent) priority, and 255 is the lowest.
For more information on priorities, see “Priorities and
Scheduling.”

tag
A caller-defined identifier for the task. The tag value is
recorded in the task’s info structure (KALTaskInfoType)
but is otherwise unused by the system.

KALTaskInfoType Function
Purpose Structure that contains everything that’s known about a task.

Declared In Kernel.h

Tasks
KALTaskInfoType

DAL Reference 173
PalmSource Confidential

Prototype typedef struct KALTaskInfoType
{
void *exinf;
KALTaskProcPtr taskProc;
void *stack;
UInt32 stackSize;
UInt32 priority;
UInt32 tag;
KernelID waitID;
UInt16 waitCause;
UInt8 taskState;
UInt8 wakeupCount;
UInt8 suspendCount;

} KALTaskInfoType;

Fields exinf
Pointer to “extended information.” This is arbitrary data that
was (allocated and) defined by the task creator when the task
was created. See KALTaskCreate for more information.

taskProc
The task’s entry point function. This is the code that the task
executes when it starts running.

stack
A pointer to the task’s stack. Stacks grow down, so this is
(numerically) the highest address value in the stack.

stackSize
The size of the stack, in bytes.

priority
The task’s execution priority, relative to other tasks. See
“Priorities and Scheduling,” above, for more information on
priority values.

tag
The task’s ID number.

waitID
If the task is waiting (for a timer, mutex, semaphore, etc.) this
is the ID of the object it’s waiting on.

waitCause
A constant that represents the type of condition the thread is
waiting on.

Tasks
KALTaskProcPtr

174 DAL Reference
PalmSource Confidential

taskState
A constant that represent’s the task’s state—running,
sleeping, waiting, etc. See “Task State Constants” for a list of
constants.

wakeupCount
The number of “wakeup” requests that are queued for this
task. A wakeup undoes the effect of KALTaskWait (which
see for details).

suspendCount
The number of suspend requests that are queued for this
task. Each suspend (KALTaskSuspend) must be balanced by
a resume (KALTaskResume

Comments Every task has a KALTaskInfoType structure associated with it. The
structure is created and maintained by the kernel. Although you can
retrieve a task’s info structure through KALTaskGetInfo, you can’t
change the data in the structure, and you should rarely need to use
the information except for purposes of debugging or profiling.

The values for those few fields that are defined by the task creator—
priority, extended info, entry point function—are all supplied
through the KALTaskCreateParamType structure that’s passed to
the KALTaskCreate function.

KALTaskProcPtr Function
Purpose Protocol for task entry point functions.

Declared In Kernel.h

Prototype typedef void (*KALTaskProcPtr) (void *);

Comments The data for the argument is supplied in the KALTaskCreate call.

Tasks
KALTaskDelay

DAL Reference 175
PalmSource Confidential

Task Functions

KALTaskCreate Function
Purpose Creates a new task.

Declared In Kernel.h

Prototype Err KALTaskCreate (KernelID *taskID,
const KALTaskCreateParamType *params)

Parameters ← taskID
Integer that uniquely identifies the task.

→ params
Caller-supplied information that’s used to create the task. See
KALTaskCreateParamType for details.

Returns errNone
Success.

kKALErrNoFreeResource
All task objects are currently being used.

kKALErrNoFreeRAM
Not enough memory to allocate the task’s resources.

kKALErrBadParam
Non-existent params argument, the priority value
specification is 0, or the stack size specification is 0.

Comments When the function (successfully) returns, the new task will be in the
dormant state. To tell the task to start operating, call
KALTaskStart.

KALTaskDelay Function
Purpose Blocks for some amount of time, thus delaying the calling task.

Declared In Kernel.h

Prototype Err KALTaskDelay (Int32 delayInMs)

Parameters → delayInMs
The amount of time to block, in milliseconds.

Tasks
KALTaskDelete

176 DAL Reference
PalmSource Confidential

Returns errNone
Success.

kKALErrBadParam
delayInMs is less than 0.

kKALErrInvalidContext
The task is currently locked into the CPU (see
KALTaskSwitching).

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify a task object.

Comments The countdown begins immediately, and continues even if the task
is suspended. When the countdown reaches 0, the task continues
execution, or waits to be resumed (if it’s still suspended).

Delaying a task can be useful if it’s not abused. See “Synchronizing
Tasks” on page 165 for more information on delaying (and
alternatives).

KALTaskDelete Function
Purpose Exits a running task (if necessary) and then destroys it.

Declared In Kernel.h

Prototype Err KALTaskDelete (KernelID taskID)

Parameters → -taskID
The ID of the task that you want to destroy.

Returns errNone
Success.

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify an extant object.

Comments You can call this function on any task, regardless of its current state.
It’s legal for a task to call this function on itself. In this case, the
function doesn’t return.

Tasks
KALTaskExit

DAL Reference 177
PalmSource Confidential

In general, you should avoid deleting tasks that aren’t already
dormant. It’s the caller’s responsibility to ensure that the targeted
task is in a “clean” state before deleting it. For example, if the task is
holding a mutex, KALTaskDelete does not release the mutex.

KALTaskExit Function
Purpose Stops a task, but doesn’t dispose of it entirely. An exited task is in

the dormant state.

Declared In Kernel.h

Prototype Err KALTaskExit (KernelID taskID)

Parameters → taskID
The ID of the task that you want to stop.

Returns errNone
Success.

kKALErrObjectInvalid
The task is already dormant.

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify an extant object.

Comments After successfully exiting the task, you can restart it
(KALTaskStart) or throw it away (KALTaskDelete).

A task can call KALTaskExit on itself. In this case, the function
never returns.

Except for already-dormant tasks, any task (i.e. in any state) can be
told to exit. The task’s current state is “forgiven.” For example, if the
task is blocked, waiting for a semaphore, the task is removed from
the semaphore’s task list queue. If you then restart the task, the task
isn’t re-inserted into the semaphore’s queue. Similarly for
suspended tasks.

In general, tasks should be allowed to exit naturally rather than by
being told to exit through this function. A task’s entry point
function should be designed to return on its own (which puts the
task into the dormant state).

Tasks
KALTaskGetCurrentID

178 DAL Reference
PalmSource Confidential

KALTaskGetCurrentID Function
Purpose Returns the ID of the calling task.

Declared In Kernel.h

Prototype Err KALTaskGetCurrentID (KernelID *taskID)

Parameters ← taskID
Reference argument that returns the calling task’s ID number.

Returns The function always returns errNone. If you call this function from
a “task-independent” task, such as the system timer task, taskID is
set to 0 (which is always an invalid kernel ID number). You’re not
allowed to access such tasks.

KALTaskGetInfo Function
Purpose Returns information about a specific task. Provided for debugging

and profiling only.

Declared In Kernel.h

Prototype Err KALTaskGetInfo (KernelID taskID,
KALTaskInfoType *taskInfo)

Parameters → taskID
The ID of the task that you want information about.

← taskInfo
Structure that returns the information. See
KALTaskInfoType for details.

Returns errNone
Success.

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify a task object.

Tasks
KALTaskStart

DAL Reference 179
PalmSource Confidential

KALTaskResume Function
Purpose Wakes up a task that was suspended through KALTaskSuspend.

Declared In Kernel.h

Prototype Err KALTaskResume (KernelID taskID)

Parameters → taskID
The ID of the (suspended) task that you want to resume.

Returns errNone
Success.

kKALErrObjectInvalid
The task isn’t currently suspended.

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify a task object.

Comments The task is resumed only if its suspension count has dropped to 0.
(Nested calls to KALTaskSuspend must be balanced by an equal
number of calls to KALTaskResume.)

KALTaskStart Function
Purpose Starts a dormant task running.

Declared In Kernel.h

Prototype Err KALTaskStart (KernelID taskID,
void *taskProcArg)

Parameters → taskID
The ID of the task that you want to shove into action.

← taskProcArg
Variable-length data that’s passed to the task’s entry point
function.

Returns errNone
Success.

kKALErrObjectInvalid
The task isn’t dormant.

Tasks
KALTaskSuspend

180 DAL Reference
PalmSource Confidential

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify an extant object.

Comments If successful, this function moves the task to the ready list. When it’s
chosen to be executed (by the kernel scheduler), the task begins
operation by executing the entry point function that was specified in
the KALTaskCreate function. When (and if) the entry point
function returns, the task is put back into the dormant state, whence
it can be restarted or deleted.

Note that if you’re restarting a task that has already run and (was
forcibly) exited, the task’s previous state (when it exited) is
forgotten. Specifically, if the task was waiting or suspended when it
was forced to exit, the task is not returned to the wait list or
suspended list when it’s told to restart.

KALTaskSuspend Function
Purpose Suspends a (non-dormant) task’s execution. The task remains

suspended until KALTaskResume is called.

Declared In Kernel.h

Prototype Err KALTaskSuspend (KernelID taskID)

Parameters → taskID
The ID of the task you want to suspend.

Returns errNone
Success.

kKALErrObjectInvalid
The task attempted to suspend itself, or the task is dormant.

kKALErrQueueOverflow
The task’s “suspension count” is already at the maximum
value.

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify a task object.

Tasks
KALTaskSwitching

DAL Reference 181
PalmSource Confidential

Comments Suspending a task causes it to drop whatever it’s doing—even if it’s
just waiting—and move over to the suspended list until it’s told to
resume through KALTaskResume. The only tasks you can’t
suspend are dormant tasks, and the calling task.

You can suspend an already-suspended task; each suspension must
be balanced by an equal number of resumptions before the task is
returned to the land of the animated.

Suspending tasks is discouraged. It’s useful while you’re
protoyping an application, but it should very rarely be used in real
code. See” Suspending and Resuming,” above, for more
information.

KALTaskSwitching Function
Purpose Enables and disables the calling task’s ability to be context switched.

Declared In Kernel.h

Prototype Err KALTaskSwitching (UInt8 enable)

Parameters → enable
If false, the calling task is locked into the CPU (it can’t be
switched out); if true, it’s unlocked (it can be switched out).

Returns Currently, the function always return 0.

Comments By disabling switching, a task (the calling task) “locks” itself into the
CPU. No other task can interrupt the locked task’s execution until it
(the locked task) enables switching. Provided for the foolhardy,
KALTaskSwitching should only be invoked when executing
extremely critical sections, such as PDA-controlled laser surgery.

The locked task can’t call any function, such as KALTaskDelay, or
KALSemaphoreWait, that could put the task into a wait state. Such
calls will return a kKALErrInvalidContext error code.

Note that interrupts are not disabled. If an interrupt handler tries to
dispatch a system call that would context switch the locked task, the
call is deferred until after the locked task is unlocked.

The locked task can make any number of
KALTaskSwitching(false) calls while it’s locked. These
additional calls are not counted: A single subsequent

Tasks
KALTaskWait

182 DAL Reference
PalmSource Confidential

KALTaskSwitching(true) invocation will undo all of the
locking calls.

KALTaskWait Function
Purpose Moves the calling task to the wait list. The task remains blocked in

KALTaskWait until some other task wakes it through
KALTaskWake.

Declared In Kernel.h

Prototype Err KALTaskWait (Int32 timeoutInMs)

Parameters → timeoutInMs
The maximum amount of time to wait for a KALTaskWake
call. If the call doesn’t arrive within timeoutInMs
milliseconds, the task will wake up anyway.

Returns errNone
Success—some other task told this task to wake up.

kDALTimeout
The timeout expired.

Comments The task only blocks if its wakeup count is 0. A task that has a
positive wakeup count isn’t stopped by KALTaskWait, although
the wakeup count is decremented.

Because KALTaskWait blocks until the task is awakened, the
function (i.e. KALTaskWait) can’t be nested.

See “Wait and Wake” on page 166 for more information about this
function.

KALTaskWaitClr Function
Purpose Sets the calling task’s wakeup count to 0, thus throwing away all

pending wake-up calls.

Declared In Kernel.h

Prototype Err KALTaskWaitClr (void)

Returns errNone
Success.

Tasks
KALTaskWake

DAL Reference 183
PalmSource Confidential

Comments See KALTaskWait, KALTaskWake, and “Wait and Wake” on
page 166 for more information.

KALTaskWake Function
Purpose Wakes up a waiting task.

Declared In Kernel.h

Prototype Err KALTaskWake (KernelID taskID)

Parameters → taskID
The ID of the task you want to wake up.

Returns errNone
Success.

kKALErrObjectInvalid
taskID identifies the calling task, or a system “task-
independent” task. Neither of these tasks is a valid target for
this call.

kKALErrInvalidID
The taskID value is out-of-bounds.

kKALErrObjectNotExist
taskID doesn’t identify a task object.

Comments If the targeted task isn’t waiting, KALTaskWake increments the
task’s “wakeup count.” See KALTaskWait and “Wait and Wake” on
page 166 for more information about this function.

Tasks
KALTaskWake

184 DAL Reference
PalmSource Confidential

DAL Reference 185
PalmSource Confidential

21
Semaphores
A semaphore acts as a key that a task must acquire in order to
continue execution. Any task can attempt to “acquire” a semaphore
through the KALSemaphoreWait function. The function blocks
until the semaphore is actually acquired (or until it times out).

When a task acquires a semaphore, that semaphore (typically)
becomes unavailable for acquisition by other tasks. The semaphore
remains unavailable until it’s “released” through a call to
KALSemaphoreSignal.

A task that attempts to acquire an unavailable semaphore is placed
at the tail of the semaphore’s task wait queue where it sits blocked
in the KALSemaphoreWait call. Each call to
KALSemaphoreSignal unblocks the task at the head of that
semaphore’s queue. Tasks in the wait queue are sorted according to
their task priorities.

The Semaphore Count
To assess “acquirability” during a KALSemaphoreWait call, a
semaphore looks at its semaphore count. This is a counting variable
that’s initialized when the semaphore is created. Ostensibly, the
semaphore count’s initial value is the number of tasks that can
acquire the semaphore at a time. (As we’ll see later, this isn’t the
entire story, but it’s good enough for now.) For example, a
semaphore that’s used as a mutually exclusive lock takes an initial
semaphore count of 1—in other words, only one task can acquire
the semaphore at a time.

Calls to KALSemaphoreWait and KALSemaphoreSignal alter the
semaphore’s count: KALSemaphoreWait decrements the count,
and KALSemaphoreSignal increments it.

When you call KALSemaphoreWait, the function looks at the
semaphore count (before decrementing it) to determine if the
semaphore is available:

Semaphores
Semaphore Structures and Constants

186 DAL Reference
PalmSource Confidential

• If the count is greater than zero, the semaphore is available
for acquisition, so the function decrements the count and
returns immediately.

• If the count is zero, the semaphore is unavailable, and the
task is placed in the semaphore’s task wait queue.

The initial semaphore count isn’t an inviolable limit on the number
of tasks that can acquire a given semaphore—it’s simply the initial
value for the semaphore’s semaphore count variable. For example, if
you create a semaphore with an initial semaphore count of 1 and
then immediately call KALSemaphoreSignal five times, the
semaphore’s semaphore count will increase to 6. Furthermore,
although you can’t initialize the semaphore count to less-than-zero,
an initial value of zero itself is common—it’s an integral part of
using semaphores to impose an execution order.

Although it’s possible to retrieve the value of a semaphore’s
semaphore count (by calling KALSemaphoreGetInfo), you should
only do so for amusement—while you’re debugging, for example.

Semaphore Structures and Constants

KALSemaphoreInfoType Function
Purpose Structure that describes a specific semaphore.

Declared In Kernel.h

Prototype typedef struct KALSemaphoreInfoType {
KernelID waitTask;
UInt16 count;
UInt16 initialCount;

} KALSemaphoreInfoType;

Fields waitTask
The task that’s at the head of the semaphore’s task wait
queue (or 0 if none).

count
The semaphore’s current count.

Semaphores
KALSemaphoreCreate

DAL Reference 187
PalmSource Confidential

initialCount
The semaphore count that was used to initialize the
semaphore.

Semaphore Functions

KALSemaphoreCreate Function
Purpose Creates a new semaphore

Declared In Kernel.h

Prototype Err KALSemaphoreCreate (KernelID *semaphoreID,
UInt32 tag, UInt32 initialCount);

Parameters ← semaphoreID
Unique identifier that’s created by the function and returned
by reference to the caller

→ tag
User-defined identifier; currently unused.

→ initialCount
Initial semaphore count. This is the number of tasks that can
acquire the (freshly minted) semaphore without blocking. An
initial count of 0 means the semaphore must be released
before it can be acquired. Valid count values are in the range
[0, 0xffff].

Returns errNone
Success.

kKALErrNoFreeResource
All semaphore objects are currently being used.

kKALErrNoFreeRAM
Not enough memory to allocate the semaphore’s resources.

kKALErrBadParam
initialCount value is out-of-bounds.

Semaphores
KALSemaphoreDelete

188 DAL Reference
PalmSource Confidential

KALSemaphoreDelete Function
Purpose Deletes a semaphore.

Declared In Kernel.h

Prototype Err KALSemaphoreDelete (KernelID semaphoreID);

Parameters → semaphoreID
The ID of the semaphore that you want to delete.

Returns errNone
Success.

kKALErrInvalidID
The semaphoreID value is out-of-bounds.

kKALErrObjectNotExist
semaphoreID doesn’t identify an extant object.

Comments Any tasks that are in this semaphore’s task wait queue are
immediately released, and return with an error code of
kKALErrObjectDeleted.

KALSemaphoreGetInfo Function
Purpose Returns information about a semaphore

Declared In Kernel.h

Prototype Err KALSemaphoreGetInfo (KernelID semaphoreID,
KALSemaphoreInfoType *semaphoreInfo)

Parameters → semaphoreID
The ID of the semaphore for which you want to retrieve
information.

← semaphoreInfo
A structure that contains the information. See
KALSemaphoreInfoType for details.

Returns errNone
Success.

kKALErrInvalidID
The semaphoreID value is out-of-bounds.

kKALErrObjectNotExist

Semaphores
KALSemaphoreWait

DAL Reference 189
PalmSource Confidential

semaphoreID doesn’t identify a semaphoreobject.

Comments Provided for debugging and profiling information only. You should
never predicate “real” code on the information in the
KALSemaphoreInfoType structure.

KALSemaphoreSignal Function
Purpose “Releases” a semaphore, thus allowing it to be acquired by the

highest priority task in the semaphore’s task queue.

Declared In Kernel.h

Prototype Err KALSemaphoreSignal (KernelID semaphoreID)

Parameters → semaphoreID
The ID of the semaphore you want to release.

Returns errNone
Success.

kKALErrQueueOverflow
The semaphore count is already at the maximum.

kKALErrInvalidID
The semaphoreID value is out-of-bounds.

kKALErrObjectNotExist
semaphoreID doesn’t identify an extant object.

Comments If there are any tasks waiting to acquire this semaphore, the highest
priority task is released (it returns from its KALSemaphoreWait
call with the value errNone). If there are no waiting tasks, the
semaphore’s semaphore count is incremented.

KALSemaphoreWait Function
Purpose Attempts to “acquire” a semaphore.

Declared In Kernel.h

Prototype Err KALSemaphoreWait (KernelID semaphoreID,
Int32 msTimeout)

Parameters → semaphoreID
The ID of the semaphore that you’re attempting to acquire.

Semaphores
KALSemaphoreWait

190 DAL Reference
PalmSource Confidential

→ msTimeout
The amount of time to wait for the acquisition, in
milliseconds. See “KAL Timeout Constants” on page 162 for
timeout constants that you can use (in addition to
millisecond values).

Returns errNone
Success.

kDALTimeout
The timeout expired.

kKALErrBadParam
Bad msTimeout value; only positive values and timeout
constants are allowed.

kKALErrInvalidContext
You called this function from a task that has context
switching disabled.

kKALErrInvalidID
The semaphoreID value is out-of-bounds.

kKALErrObjectNotExist
semaphoreID doesn’t identify an extant object.

Comments If the semaphore’s count is greater than 0, the semaphore is
immediately available: The count is decremented, and the task
returns immediately. If the count is 0, the task is moved onto the
semaphore’s task wait queue.

DAL Reference 191
PalmSource Confidential

22
Mutexes
A mutex is a “mutual exclusion” lock. It provides a simple means to
protect non-reentrant code (or other critical code areas) from being
executed by more than one task at a time.

A mutex is locked and unlocked through calls to
KALMutexReserve and KALMutexRelease. A single mutex can
be reserved by (or “held by”) only one task at a time; while a task
holds a mutex, it’s called the mutex’s “owner.” A mutex can only be
released by its owner.

While it holds a mutex, the owner can make additional
KALMutexReserve calls. This increments the mutex’s lock count.
To release the mutex, the owner must decrement the lock count to 0
through complementary calls to KALMutexRelease.

Calls made to KALMutexReserve by non-owning tasks block while
a mutex is being held, and the wanna-be reservers are placed in the
mutex’s task wait queue. The queue is sorted by task priority. When
the mutex is released, the task with the most urgent priority is given
ownership of the mutex.

Mutexes
Mutex Structures and Constants

192 DAL Reference
PalmSource Confidential

Mutex Structures and Constants

KALMutexInfoType Function
Purpose Structure that contains information about a mutex.

Declared In Kernel.h

Prototype typedef struct KALMutexInfoType {
KernelID holdingTask;
KernelID waitTask;

} KALMutexInfoType;

Fields holdingTask
The task that currently owns the mutex (if any). This is the
only task that’s allowed to release the mutex.

waitTask
The highest priority task in the mutex’s task queue. When the
mutex is released by its present owner, this is the next task
that will reserve the mutex.

Comments You can retrieve this structure through KALMutexGetInfo. The
information in this structure is provided for debugging and
profiling purposes only; never use this information to predicate
“real” code.

Mutex Functions

KALMutexCreate Function
Purpose Creates a new, unowned mutex.

Declared In Kernel.h

Prototype Err KALMutexCreate (KernelID *mutexID, UInt32 tag)

Parameters ← mutexID
System-wide unique ID of the new mutex.

→ tag
Caller-defined identifier for the mutex. Currently unused.

Mutexes
KALMutexGetInfo

DAL Reference 193
PalmSource Confidential

Returns 0
Success.

kKALErrNoFreeResource
All mutex objects are currently being used.

kKALErrNoFreeRAM
Not enough memory to create another mutex.

KALMutexDelete Function
Purpose Deletes a mutex.

Declared In Kernel.h

Prototype Err KALMutexDelete (KernelID mutexID)

Parameters → mutexID
The ID of the mutex that you want to delete.

Returns 0
Success.

kKALErrInvalidID
The mutexID value is out-of-bounds.

kKALErrObjectNotExist
mutexID doesn’t identify an extant object.

Comments If there are any tasks waiting to reserve this mutex, they’re
immediately unblocked and return kKALErrObjectDeleted.

KALMutexGetInfo Function
Purpose Returns information about a mutex.

Declared In Kernel.h

Prototype Err KALMutexGetInfo (KernelID mutexID,
KALMutexInfoType *mutexInfo)

Parameters → mutexID
The ID of the mutex you want information about.

← mutexInfo
The dope.

Mutexes
KALMutexRelease

194 DAL Reference
PalmSource Confidential

Returns errNone
Success.

kKALErrInvalidID
The mutexID value is out-of-bounds.

kKALErrObjectNotExist
mutexID doesn’t identify an extant object.

Comments Provided for debugging and profiling information only. You should
never predicate “real” code on the information in the
KALMutexInfoType structure.

KALMutexRelease Function
Purpose Releases a mutex. Only the mutx’s owner can release a mutex.

Declared In Kernel.h

Prototype Err KALMutexRelease (KernelID mutexID)

Parameters → mutexID
The ID of the mutex you want to release.

Returns errNone
Success.

kKALErrNotOwner
The caller doesn’t own the mutex.

kKALErrInvalidID
The mutexID value is out-of-bounds.

kKALErrObjectNotExist
mutexID doesn’t identify an extant object.

Comments Each successful KALMutexRelease call decrements the mutex’s lock
count. If the mutex’s lock count is decremented to 0 as a result of
this call, the caller (owner) releases the mutex and ownership is
passed to the highest priority task in the mutex’s task wait queue. If
there are no waiting tasks, the mutex goes unowned until the next
KALMutexReserve call.

If the lock count remains greater than 0 (because the owner has
made additional calls to KALMutexReserve), the caller retains
ownership until it has made enough KALMutexRelease calls to
decrement the lock count to 0.

Mutexes
KALMutexReserve

DAL Reference 195
PalmSource Confidential

KALMutexReserve Function
Purpose Tries to reserve the mutex.

Declared In Kernel.h

Prototype Err KALMutexReserve (KernelID mutexID,
Int32 msTimeout)

Parameters → mutexID
The ID of the mutex that you want to reserve.

→ msTimeout
The amount of time, in milliseconds, that you’re willing to
wait for the mutex to become available. See “KAL Timeout
Constants” on page 162 for timeout constants that you can
use (in addition to millisecond values).

Returns 0
Success

kDALTimeout
The timeout has expired.

kKALErrInvalidContext
You called this function from a task that has context
switching disabled.

kKALErrObjectDeleted
The mutex was deleted while the caller was waiting for it.

kKALErrBadParam
Bad msTimeout value; only positive values and timeout
constants are allowed.

kKALErrQueueOverflow
The mutex’s lock count has hit the maximum allowed value.

kKALErrInvalidID
The mutexID value is out-of-bounds.

kKALErrObjectNotExist
mutexID doesn’t identify an extant object.

Comments If the mutex is unowned, the caller becomes the owner and returns
immediately.

If the caller is already the owner, the mutex’s lock count is
incremented (and the function returns immediately). To release the
mutex, the owner must make an equal number of calls to

Mutexes
KALMutexReserve

196 DAL Reference
PalmSource Confidential

KALMutexRelease (i.e. equal to the number of
KALMutexReserve calls it made).

If the mutex is owned, but not by the caller, the calling task is placed
on the mutex’s task queue. The task queue is sorted by task priority;
when the mutex becomes available, the task with the highest
priority becomes the mutex’s new owner and returns from the
KALMutexReserve call.

DAL Reference 197
PalmSource Confidential

23
Event Groups
An event group is a set of conditions that a task can monitor. Each
condition is represented, within the event group, as a single
(ordered) event bit, where a value of 1 means the condition obtains
(or “is set”). As the condition changes state, an agent must toggle
the corresponding event bit by calling KALEventGroupSignal
and KALEventGroupClear.

In the meantime, a task can block on the event group by calling
KALEventGroupWait. When it calls KALEventGroupWait, the
task specifies which events it’s interested in (this is called the task’s
wait pattern); when these events become set, the task is unblocked.
More than one task can wait on the same event group. Waiting tasks
aren’t queued; the only predicate for releasing a waiting task is
whether the task’s wait pattern is satisfied.

Each event group can contain as many as 32 events. The
correspondences between “real world” conditions and (the order of)
event bits is arbitrary. Creating an agent that will keep the event
group up-to-date with regard to the state of the conditions is up to
the caller.

Event Group Structures and Constants

Event Group Wait Mode Constants
Purpose Constants that help define a wait pattern.

Declared In Kernel.h

Constants kEventGroupAll
Used to specify that the wait pattern is satisfied only if all the
events in the wait pattern are set.

Event Groups
KALEventGroupInfoType

198 DAL Reference
PalmSource Confidential

kEventGroupAny
Used to specify that the wait pattern is satisfied if any of the
events in the wait pattern is set.

KALEventGroupInfoType Struct
Purpose Structure that contains information about an event group.

Declared In Kernel.h

Prototype typedef struct KALEventGroupInfoType
{
KernelID waitTask;
UInt32 events;

} KALEventGroupInfoType;

Fields waitTask
The ID of the “first” task that’s waiting on the event group.
There may be more than one waiting task, but, currently, you
can only retrieve the ID of the first one.

events
The event group’s event bits.

Comments You can retrieve an event group’s info structure through
KALEventGroupGetInfo. However, you can’t change the info in
the structure (directly), nor should you predicate your code based
on the structure’s values. The info structure is provided, primarily,
for debugging and profiling purposes.

Event Groups
KALEventGroupClear

DAL Reference 199
PalmSource Confidential

KALEventGroupWaitParamType Struct
Purpose Structure that encapsulates a waiting task’s wait pattern. The

structure is used as an argument to KALEventGroupWait.

Declared In Kernel.h

Prototype typedef struct KALEventGroupWaitParamType
{
 UInt32 waitPattern;
 UInt32 matchType;
 Int32 timeout;
} KALEventGroupWaitParamType;

Fields waitPattern
Bitfield that specifies a task’s wait pattern. These are the
events that the task is interested in (and will block on until
they’re set).

matchType
Either kEventGroupAll or kEventGroupAny; the former
means that all the events in waitPattern must be set before the
task is unblocked. The latter means that if any of the events in
waitPattern is set, the task will be unblocked.

timeout
The amount of time to wait for the wait pattern to hold, in
milliseconds. Also see the timeout constants in “KAL
Timeout Constants” on page 162.

Event Group Functions

KALEventGroupClear Function
Purpose “Unsets” (sets to 0) one or more event bits.

Declared In Kernel.h

Prototype Err KALEventGroupClear (KernelID eventGroupID,
UInt32 events)

Parameters → eventGroupID
The ID of the event group whose event bits you want to clear.

Event Groups
KALEventGroupCreate

200 DAL Reference
PalmSource Confidential

→ events
Bitmask that’s AND’d onto the event bits.

Returns 0
Success.

kKALErrInvalidID
The eventGroupID value is out-of-bounds.

kKALErrObjectNotExist
eventGroupID doesn’t identify an extant object.

Comments Since events is AND’d with the event group’s event bits, any bits
that aren’t set in events will be cleared in the event bits.

Clearing bits won’t cause waiting tasks to be released—tasks wait
for event bits to be set, not for them to be cleared.

To set the event bits, use KALEventGroupSignal.

KALEventGroupCreate Function
Purpose Creates a new event group object and sets its initial state.

Declared In Kernel.h

Prototype Err KALEventGroupCreate (KernelID *eventGroupID,
UInt32 tag, UInt32 initialState)

Parameters ← eventGroupID
System-wide unique ID that identifies the new event group.

→ tag
Caller-supplied identifier; currently unused.

→ initialState
Bitfield that sets the initial states of the event group’s event
bits.

Returns 0
Success

kKALErrNoFreeResource
All event group objects are currently being used.

kKALErrNoFreeRAM
Not enough memory to create another event group.

Event Groups
KALEventGroupGetInfo

DAL Reference 201
PalmSource Confidential

KALEventGroupDelete Function
Purpose Deletes an event group, releasing all tasks that are blocked on the

object.

Declared In Kernel.h

Prototype Err KALEventGroupDelete (KernelID eventGroupID)

Parameters → eventGroupID
ID of the event group you want to delete.

Returns 0
Success.

kKALErrInvalidID
The eventGroupID value is out-of-bounds.

kKALErrObjectNotExist
eventGroupID doesn’t identify an extant object.

Comments When an event group is deleted, the tasks that it’s blocking are
immediately unblocked and return with the error code
kKALErrObjectDeleted.

KALEventGroupGetInfo Function
Purpose Returns a structure that describes the state of the event group.

Declared In Kernel.h

Prototype Err KALEventGroupGetInfo (KernelID eventGroupID,
KALEventGroupInfoType *eventGroupInfo)

Parameters → eventGroupID
The ID of the event group you want information on.

← eventGroupInfo
Structure that encapsulates the event group info. See
KALEventGroupInfoType for more info.

Returns 0
Success.

kKALErrInvalidID
The eventGroupID value is out-of-bounds.

kKALErrObjectNotExist
eventGroupID doesn’t identify an extant object.

Event Groups
KALEventGroupRead

202 DAL Reference
PalmSource Confidential

Comments Provided for debugging and profiling information only. You should
never predicate “real” code on the information in the
KALEventGroupInfoType structure.

KALEventGroupRead Function
Purpose Returns the current state of the event group’s event bits.

Declared In Kernel.h

Prototype Err KALEventGroupRead (KernelID eventGroupID,
UInt32 *events)

Parameters → eventGroupID
The ID of the event group whose event bits you want “read.”

← events
Value that returns (a copy of) the event bits.

Returns 0
Success.

kKALErrInvalidID
The eventGroupID value is out-of-bounds.

kKALErrObjectNotExist
eventGroupID doesn’t identify an extant object.

KALEventGroupSignal Function
Purpose Sets one or more event bits. This may cause waiting tasks to be

released.

Declared In Kernel.h

Prototype Err KALEventGroupSignal (KernelID eventGroupID,
UInt32 events)

Parameters → eventGroupID
ID of the event group you want to modify.

→ events
Bitmask that’s OR’d onto the current event bits.

Returns 0
Success.

Event Groups
KALEventGroupWait

DAL Reference 203
PalmSource Confidential

kKALErrInvalidID
The eventGroupID value is out-of-bounds.

kKALErrObjectNotExist
eventGroupID doesn’t identify an extant object.

Comments Since the new events mask is OR’d onto the existing event bits, any
event bits that are already set remain set—to “unset” a bit, use
KALEventGroupClear.

After the new event mask is applied, all tasks that are currently
waiting on this event group are examined to see if the change
satisfies their (the waiting tasks’) wait patterns. Satisfied tasks are
unblocked.

KALEventGroupWait Function
Purpose Blocks on the event group until the specified wait pattern is

satisfied.

Declared In Kernel.h

Prototype Err KALEventGroupWait (KernelID eventGroupID,
const KALEventGroupWaitParamType *patternSpec,
UInt32 *events)

Parameters → eventGroupID
ID of the event group you want (this task) to block on.

→ patternSpec
Description of the wait pattern that must be satisfied before
this task is unblocked (including a timeout).

← events
The state of the event group’s event bits as the function
returns (provided for debugging and profiling purposes).

Returns 0
Success.

kKALErrObjectDeleted
The event group was deleted while this task was waiting.

kKALErrBadParam
The patternSpec->matchType value is invalid (see
KALEventGroupWaitParamType for valid values).

Event Groups
KALEventGroupWait

204 DAL Reference
PalmSource Confidential

kDALTimeout
The timeout specified by patternSpec->timeout expired.

kKALErrInvalidID
The eventGroupID value is out-of-bounds.

kKALErrObjectNotExist
eventGroupID doesn’t identify an extant object.

DAL Reference 205
PalmSource Confidential

24
Mailboxes
A mailbox is a task-independent message queue (FIFO) that tasks
can use to pass data (or “messages”) to each other.

You place a message in a mailbox by calling KALMailboxSend. The
message is placed at the end of the mailbox’s message queue.
KALMailboxWait does the opposite: It pops the first message off
queue and returns it to the caller.

If the message queue is empty when you call KALMailboxWait,
the calling task is placed in the mailbox’s task wait queue where it
waits until a message shows up. Tasks in the queue are ordered
according to their priorities. When a message arrives, the highest
priority (waiting) task gets the message. There’s no limit to the
number of tasks that can wait on a mailbox.

Mailbox Messages
Mailbox messages are 32-bit numbers that, typically, are used to
point to caller-managed data. Note that the mailbox doesn’t copy,
free, or otherwise manage pointed-to data.

You can cast a mailbox message (value) to hold a KernelID
number; this is a convenient way to broadcast a semaphore ID (or
other object identifier) between tasks.

Mailboxes
Mailbox Structures and Constants

206 DAL Reference
PalmSource Confidential

Mailbox Structures and Constants

KALMailboxInfoType Struct
Purpose Structure that contains information about a mailbox.

Declared In Kernel.h

Prototype typedef struct KALMailboxInfoType
{
KernelID waitTask;

void *msg;
} KALMailboxInfoType;

Fields waitTask
The ID of the task that’s at the top of the mailbox’s task wait
queue. If there are no waiting tasks, this value is 0.

msg
The message that’s at the top of the message queue. This is
the message that will be returned by the next
KALMailboxWait call. If there are no messages in the queue,
the field points to NULL.

Comments The KALMailboxInfoType structure is returned by the
KALMailboxGetInfo function.

Mailbox Functions

KALMailboxCreate Function
Purpose Creates a new, empty mailbox.

Declared In Kernel.h

Prototype Err KALMailboxCreate (KernelID *mailboxID,
UInt32 tag, UInt32 depth)

Parameters ← mailboxID
The system-wide unique ID of the new mailbox.

Mailboxes
KALMailboxDelete

DAL Reference 207
PalmSource Confidential

→ tag
A caller-defined identifier for the mailbox.

→ depth
The depth of the mailbox’s message queue. This is the
maximum number of (concurrent) messages the mailbox can
hold. Must be at least 1.

Returns errNone
Success.

kKALErrNoFreeResource
All mailbox objects are currently being used.

kKALErrNoFreeRAM
Not enough memory to create another mailbox.

kKALErrBadParam
You specified a depth of 0. Mailbox depths must be greater
than 0.

KALMailboxDelete Function
Purpose Deletes the mailbox and releases any tasks that are blocked on the

mailbox.

Declared In Kernel.h

Prototype Err KALMailboxDelete (KernelID mailboxID)

Parameters mailboxID
The ID of the mailbox you want to delete.

Returns errNone
Success.

kKALErrInvalidID
The mailboxID value is out-of-bounds.

kKALErrObjectNotExist
mailboxID doesn’t identify an extant object.

Comments If there are any tasks waiting for a message to show up in this
mailbox, they’re immediately unblocked and return
kKALErrObjectDeleted.

This function doesn’t delete the data that mailbox’s messages point
to (keep in mind that the messages are usually pointers).

Mailboxes
KALMailboxGetInfo

208 DAL Reference
PalmSource Confidential

KALMailboxGetInfo Function
Purpose Returns information about the mailbox.

Declared In Kernel.h

Prototype Err KALMailboxGetInfo (KernelID mailboxID,
KALMailboxInfoType *mailboxInfo)

→ mailboxID
The ID of the mailbox you want information on.

← eventGroupInfo
Structure that encapsulates the mailbox info. See
KALMailboxInfoType for more info.

Returns errNone
Success.

kKALErrInvalidID
The mailboxID value is out-of-bounds.

kKALErrObjectNotExist
mailboxID doesn’t identify an extant object.

Comments Provided for debugging and profiling information only. You should
never predicate “real” code on the information in the
KALMailboxInfoType structure.

KALMailboxSend Function
Purpose Places a new messages at the tail of the mailbox’s message queue.

Declared In Kernel.h

Prototype Err KALMailboxSend (KernelID mailboxID,
const void *message)

Parameters → mailboxID
The ID of the mailbox into which you wish to gently deposit
your message.

→ message
The message. Ostensibly, this is a pointer to some other data,
although, since message is never de-referenced by the
mailbox, you can use it to pass an actual 32-bit value. If
you’re passing a pointer, the pointed-to data will not be freed

Mailboxes
KALMailboxWait

DAL Reference 209
PalmSource Confidential

by the mailbox. Determining who frees the data (sender or
recipient—or nobody) is up to the mailbox users.

Returns errNone
Success.

kKALErrQueueOverflow
The mailbox is full.

kKALErrInvalidID
The mailboxID value is out-of-bounds.

kKALErrObjectNotExist
mailboxID doesn’t identify an extant object.

Comments If there are any tasks waiting on this mailbox, the task with the
highest priority is given the newly-sent message.

KALMailboxWait Function
Purpose Retrieves a message from a mailbox. If there are no messages, the

calling task is placed in the mailbox’s priority-sorted task queue.

Declared In Kernel.h

Prototype Err KALMailboxWait (KernelID mailboxID,
void **message, Int32 msTimeout)

Parameters → mailboxID
The ID of the mailbox into which you wish to gently deposit
your message.

← message
A pointer to a buffer into which the message is copied.

→ msTimeout
The amount of time to wait for a message to arrive, in
milliseconds. See “KAL Timeout Constants” on page 162 for
timeout constants that you can use (in addition to
millisecond values).

Returns errNone
Success

kDALTimeout
A message didn’t show up within the specified timeout.

Mailboxes
KALMailboxWait

210 DAL Reference
PalmSource Confidential

kKALErrInvalidContext
You called this function from a task that has context
switching disabled.

kKALErrObjectDeleted
The mailbox was deleted while the caller was waiting

kKALErrBadParam
Bad msTimeout value; only positive values and timeout
constants are allowed.

kKALErrInvalidID
The mailboxID value is out-of-bounds.

kKALErrObjectNotExist
mailboxID doesn’t identify an extant object.

DAL Reference 211
PalmSource Confidential

25
Timers
The kernel creates, owns, and runs a timer task that’s used to
perform short operations. The timer task does this by stepping
through its list of timer objects. Each timer contains a timestamp
and a function pointer: The timestamp signifies when (in the future)
the function will run: When the timestamp expires, the function is
executed.

You augment the timer task’s list of timers by creating a timer object
(KALTimerCreate) and telling it when to run (KALTimerSet).
Timers are non-periodic—after a timer’s function is invoked, the
timer sits and waits for another KALTimerSet invocation. You can
simulate a perioidic timer by calling KALTimerSet from the timer’s
function. Thus, every time the function is executed, the timer is
rescheduled.

Keep in mind that all timer functions are executed in the timer task’s
context. While it’s executing a timer function, the timer task can’t be
context switched, and interrupts are disabled. Because of this, timer
functions must execute in as few cycles as possible, and they can’t
make any calls to the timer task itself (function calls on the timer
task are blocked).

Timers
Timer Structures, Constants, and Types

212 DAL Reference
PalmSource Confidential

Timer Structures, Constants, and Types

Timer State Constants
Purpose Constants that represent the two timer states (running and

stopped).

Declared In Kernel.h

Constants kTimerStopped
The timer is stopped. This means that the either the timer is
waiting for a KALTimerSet call, or the timer’s function has
already run.

kTimerRunning
The timer is running.

KALTimerInfoType Struct
Purpose Structure that contains information about a particular timer.

Declared In Kernel.h

Prototype typedef struct KALTimerInfoType {
UInt32 timeLeft;
UInt8 timerState;

} KALTimerInfoType;

Fields timeLeft
The amount of time left in the function’s timestamp,
measured in milliseconds. In other words, this is the amount
of time before the timer’s function is invoked.

timerState
The state of the timer, either running (kTimerRunning) or
not (kTimerStopped).

Timers
KALTimerCreate

DAL Reference 213
PalmSource Confidential

KALTimerProcPtr Typedef
Purpose Protocol for timer functions.

Declared In Kernel.h

Prototype typedef void (*KALTimerProcPtr) (void *);

Comments The data for the argument is supplied in the KALTimerCreate call.

Timer Functions

KALTimerCreate Function
Purpose Creates a new timer object.

Declared In Kernel.h

Prototype Err KALTimerCreate (KernelID *timerID, UInt32 tag,
KALTimerProcPtr timerProc, void *timerProcArg)

Parameters ← timerID
Returns the system-wide unique ID of the newly created
timer. You use this value as a cookie for the other timer
functions.

→ tag
Currently unused.

→ timerProc
A pointer to the timer’s function. See KALTimerProcPtr for
the prototype for this function.

→ timerProcArg
A pointer to data that will be passed as an argument to
timerProc.

Returns 0
Success

kKALErrNoFreeResource
All timer objects are currently being used.

kKALErrNoFreeRAM
Not enough memory to create another timer.

Timers
KALTimerDelete

214 DAL Reference
PalmSource Confidential

Comments This creates the timer object, defines its function (and argument
data), and adds the object to the timer task’s list of timers. What it
doesn’t do is set the timer’s timestamp or tell it to start running: To
do that, you must call KALTimerSet.

The timer persists until you delete it through KALTimerDelete.

KALTimerDelete Function
Purpose Stops a timer, removes it from the kernel’s timer list, and deletes it.

Declared In Kernel.h

Prototype Err KALTimerDelete (KernelID timerID)

Parameters → timerID
The ID of the timer you want to delete.

Returns 0
Success.

kKALErrInvalidID
timerID doesn’t identify a valid timer object.

kKALErrObjectNotExist
timerID doesn’t identify an extant object.

Comments You can include this call in an implementation of a timer’s function:
A timer’s function is allowed to delete the timer.

Note that timer ID values are recycled: When you delete a timer, its
ID is available for use by a newly created timer. Thus, you should
take care when caching time IDs.

Timers
KALTimerSet

DAL Reference 215
PalmSource Confidential

KALTimerGetInfo Function
Purpose Returns information about a timer. Provided for debugging and

profiling purposes; you should never predicate “real” code on the
information returned here.

Declared In Kernel.h

Prototype Err KALTimerGetInfo (KernelID timerID,
KALTimerInfoType *timerInfo)

Parameters → timerID
The ID of the timer you want information about.

← timerInfo
A structure that contains the information. See
KALTimerInfoType for details.

Returns 0
Success.

kKALErrInvalidID
timerID doesn’t identify a valid timer object.

kKALErrObjectNotExist
timerID doesn’t identify an extant object.

KALTimerSet Function
Purpose Starts or stops the timer.

Declared In Kernel.h

Prototype Err KALTimerSet (KernelID timerID,
UInt32 timestamp)

Parameters → timerID
The ID of the timer you want to affect.

→ timestamp
If greater than zero, the timer is started and the argument is
the amount of time, in milliseconds, that the timer task waits
before executing this timer’s function. If timestamp <= 0,
the timer is immediately stopped.

Returns 0
Success.

Timers
KALTimerSet

216 DAL Reference
PalmSource Confidential

kKALErrInvalidID
timerID doesn’t identify a valid timer object.

kKALErrObjectNotExist
timerID doesn’t identify an extant object.

Comments If the timer is already running (and timestamp > 0), the timer is
“stopped” before it’s restarted.

You can include this call in an implementation of a timer’s function.
In other words, a timer’s function is allowed to delete its timer.

DAL Reference 217
PalmSource Confidential

Index

A
AbsRectType 101

B
BitmapCompressionType 102
BitmapFlagsType 102
BitmapType 104
Blitter 117
Blitter Functions 117
BltBitmapType 106

C
Calibrating the Pen 18
CanvasType (single-density) 108
ColorTableType 109
Constants

HAL
HALDockStatus Constants 5
kHALDispAddr 24
kHALDispAllDepth 24
kHALDispBacklight 24
kHALDispBootDepth 24
kHALDispBrightness 25
kHALDispColor 25
kHALDispContrast 25
kHALDispDensity 25
kHALDispDepth 25, 26
kHALDispDgtScale 26
kHALDispHeight 26
kHALDispInputAreaBmp 27
kHALDispInputAreaSelectedBmp 28
kHALDispMAXDepth 28
kHALDispName 28, 29
kHALDispPixelFormat 29
kHALDispRowBytes 29
kHALDispSilkScreenLoc 27
kHALDispStdScale 26
kHALDispVRAMAddr 29
kHALDispVRAMSize 29, 30
kHALDispWidth 29
kHALDockStatusCharging 5
kHALDockStatusDockAttached 5
kHALDockStatusMfgTestCradleAttached

6
kHALDockStatusModemAttached 5

kHALDockStatusPeripheralAttached 6
kHALDockStatusUndocked 5
kHALDockStatusUSBCradleAttached 5
kHALDockStatusUSBPeripheralAttached

6
kHALDockStatusUsingExternalPower 5
portBkgndModeSupported 81
portCncMgrVisible 82
portCradlePort 82
portExternalPort 82
portIRDACapable 82
portModemPort 82
portPrivateUse 82
portRS232Capable 81
portUSBCapable 82
vdrvOpCodeClearErr 87
vdrvOpCodeFlushRxFIFO 88, 89
vdrvOpCodeFlushTxFIFO 88, 89
vdrvOpCodeGetDTRAsserted 90
vdrvOpCodeGetOptTransmitSize 88, 89
vdrvOpCodeGetRcvTheshold 88, 89
vdrvOpCodeGetUSBConfigDescriptor 90
vdrvOpCodeGetUSBDeviceDescriptor 90
vdrvOpCodeNotifyBytesReadFromQ 90
vdrvOpCodeSendBufferedData 88, 89
vdrvOpCodeSetBaudRate 87
vdrvOpCodeSetCtsTimeout 87
vdrvOpCodeSetDTRAsserted 90
vdrvOpCodeSetSettingsFlags 87
vdrvOpCodeSetSleepMode 87
vdrvOpCodeSetWakeupMode 88, 89
vdrvOpCodeStartBreak 88, 89
vdrvOpCodeStartLoopback 88, 89
vdrvOpCodeStopBreak 88, 89
vdrvOpCodeStopLoopback 88, 89
vdrvOpCodeTxFIFOCount 88, 89
vdrvOpCodeWaitForConfiguration 90
window coordinate system 114

Coord 18
coordinate system constants 114
Creating, Starting, and Stopping a Task 165
CustomPatternType 109

D
Data Structures

HAL

218 DAL Reference
PalmSource Confidential

AbsRectType 101
BitmapCompressionType 102
BitmapFlagsType 102
BitmapType 104
BltBitmapType 106
CanvasType (single-density) 108
ColorTableType 109
Coord 18
CustomPatternType 109
DrawStateType 110
DrvEntryOpCodeEnum 78
DrvInfoType 79
DrvRcvQTag 82
HALMemoryMap 67
IndexedColorType 112
InterruptAllStatus 45
IRQState 45
PointType 18
RectangleType 112
RGBColorType 30, 113
SysBatteryKind 6
SysBatteryState 7
UsbDeviceRequestType 95
VdrvAPIType 84
VdrvConfigType 85
VdrvDataPtr 86
WinDrawOperation Enumeration 114
WinLockInitType 113

Digitizer Support Data Structures 18
Digitizer Support Functions 18
Display 23
Display Data Constants 23
Display Data Structures 30
Display Functions 31
Double-Density Blitter Functions

HALDraw_Bitmap 124
HALDraw_GetPixel 128
HALDraw_Glyphs 126
HALDraw_Line 128
HALDraw_Pixels 129
HALDraw_Rectangle 130

DrawStateType 110
DrvClose 124
DrvEntryOpCodeEnum 78
DrvInfoType 79
DrvRcvQTags 82

E
Event Group Structures and Constants 197
Event Group Wait Mode Constants 197
Event Groups 197
EZIncs/PenMgrEZRefPrv.h 18, 30

F
Function Groups

Battery Support 5
Display 23
Initialization 41
Interrupt Handling 45
Keyboard Support 49
Memory 67
Power States 55
Screen 99
Serial Driver 77
Sound Support 133
Timer Support 143

Functions
HAL

HALBatteryGetInfo 8
HALBatteryGetValidKinds 9
HALBatterySetInfo 10
HALDelay 143
HALDisplayDoze 35
HALDisplayDrawBootScreen 31
HALDisplayGetAttributes 32
HALDisplayGetPalette 33
HALDisplayLock 36, 38
HALDisplaySetAttributes 34
HALDisplaySetPalette 34
HALDisplaySleep 37
HALDisplayWake 39
HALDockStatus 10
HALDrawFindIndexes 127
HALDrawInit 131
HALEventRegisterCallback 62, 64
HALGetHwrMiscFlags 63
HALGetHwrMiscFlagsExt 63
HALGetSilkscreenInfo 18
HALInterruptAllSetStatus 46
HALInterruptGetHandler 46
HALInterruptSetHandler 47
HALInterruptSetState 47
HALKeyGetRates 50

DAL Reference 219
PalmSource Confidential

HALKeyGetState 51
HALKeyResetDouble 51
HALKeySetMask 52
HALMemoryGetMemoryMap 70
HALMemoryGetStorageAreaProtectionSt

ate 71
HALMemorySetStorageAreaProtectionSta

te 71
HALOEMGetCompanyID 64
HALOEMGetDeviceID 65
HALOEMGetHALID 65
HALPenCalibrate 18
HALPenRawToScreen 19
HALPenResetCalibration 20
HALPenScreenToRaw 20
HALPowerGetAutoOffEvtTime 56
HALPowerGetAutoOffSeconds 56
HALPowerSetAutoOffEvtTime 56
HALPowerSetAutoOffSeconds 57
HALPowerSleepReady 57
HALProcessorID 65
HALRandomInitializeSeed 59
HALRedrawInputArea 117
HALReset 62
HALScreenDefaultPalette 118
HALScreenDrawNotify 118
HALScreenGetColortable 119
HALScreenInit 119
HALScreenLock 120
HALScreenPalette 121
HALScreenSendUpdateArea 122
HALScreenUnlock 123
HALScreenUpdateBitmap 124
HALSerialClose 86
HALSerialControl 86
HALSerialControlCustom 90
HALSerialEntryPoint 91
HALSerialOpen 92
HALSerialStatus 94
HALSerialWrite 95
HALSetHwrMiscFlags 65
HALSetInitStage 60
HALSoundOff 139
HALSoundPlay 140
HALTimeGetAlarm 73
HALTimeGetSeconds 74
HALTimeGetSystemTime 74
HALTimeGetSystemTimerInterval 75

HALTimeSetAlarm 75
HALTimeSetSeconds 76
HALTraceClose 14
HALTraceInit 14
HALTraceOutputB 14
HALTraceOutputT 14
HALTraceOutputVT 15
HwrInterruptsInit 47
HwrPostDebugInit 41
HwrPreDebugInit 42
HwrPreRAMInit 42
InitStage1 43
InitStage2 43
MHALGetHwrWakeUp 63
PalmOSMain 60
Reset_A 44
UsbConnect 96
UsbDisconnect 96
USBRequestGetExtConnectionInfo 97

KAL
Semaphores 185
Tasks 165

kHAL
kHAL_CPULock 149
kHAL_CPUUnlock 149
kHAL_CreateInitialTaskContext 150
kHAL_DisableInt 150
kHAL_Doze 150
kHAL_EnableInt 151
kHAL_Init 151
kHAL_SwitchToFirstTask 153

H
HALBatteryGetInfo 8
HALBatteryGetValidKinds 9
HALBatterySetInfo 10
HALDelay 143
HALDisplayDoze 35
HALDisplayDrawBootScreen 31
HALDisplayGetAttributes 32
HALDisplayGetPalette 33
HALDisplayLock 36, 38
HALDisplaySetAttributes 34
HALDisplaySetPalette 34
HALDisplaySleep 37
HALDisplayWake 39

220 DAL Reference
PalmSource Confidential

HALDockStatus 10
HALDockStatus Constants 5
HALDrawFindIndexes 127
HALDrawInit 131
HALEventRegisterCallback 62, 64
HALGetHwrMiscFlags 63
HALGetHwrMiscFlagsExt 63
HALGetSilkscreenInfo 18
HALInterruptAllSetStatus 46
HALInterruptGetHandler 46
HALInterruptSetHandler 47
HALInterruptSetState 47
HALKeyGetRates 50
HALKeyGetState 51
HALKeyResetDouble 51
HALKeySetMask 52
HALMemoryGetMemoryMap 70
HALMemoryGetStorageAreaProtectionState 71
HALMemoryMap 67
HALMemorySetStorageAreaProtectionState 71
HALOEMGetCompanyID 64
HALOEMGetDeviceID 65
HALOEMGetHALID 65
HALPenCalibrate 18
HALPenRawToScreen 19
HALPenResetCalibration 20
HALPenScreenToRaw 20
HALPlaySmf 136
HALPowerGetAutoOffEvtTime 56
HALPowerGetAutoOffSeconds 56
HALPowerSetAutoOffEvtTime 56
HALPowerSetAutoOffSeconds 57
HALPowerSleepReady 57
HALProcessorID 65
HALRandomInitializeSeed 59
HALRedrawInputArea 117
HALReset 62
HALSceenPalette 121
HALScreenDefaultPalette 118
HALScreenDrawNotify 118
HALScreenInit 119
HALScreenLock 120
HALScreenSendUpdateArea 122

HALScreenUnlock 123
HALScreenUpdateBitmap 122, 124
HALScrGetColortable 119
HALSerialClose 86
HALSerialControl 86
HALSerialControlCustom 90
HALSerialEntryPoint 91
HALSerialOpen 92
HALSerialStatus 94
HALSerialWrite 95
HALSetHwrMiscFlags 65
HALSetInitStage 60
HALSndIoctlCmd 134
HALSoundAllocStreamBufType 134
HALSoundClose 136
HALSoundDispose 137
HALSoundInitialize 137
HALSoundInitStreamType 135
HALSoundIoctl 137
HALSoundOff 139
HALSoundOpen 139
HALSoundPlay 140
HALSoundRead 140
HALSoundSleep 141
HALSoundWake 141
HALSoundWrite 141
HALTimeGetAlarm 73
HALTimeGetSeconds 74
HALTimeGetSystemTime 74
HALTimeGetSystemTimerInterval 75
HALTimeSetAlarm 75
HALTimeSetSeconds 76
HALTraceClose 14
HALTraceInit 14
HALTraceOutputB 14
HALTraceOutputT 14
HALTraceOutputVT 15
handlerArg 152
HwrDock.h 11
HwrInterruptsInit 47
HwrPostDebugInit 41
HwrPreDebugInit 42
HwrPreRAMInit 42

DAL Reference 221
PalmSource Confidential

HwrSoundOn 139

I
IndexedColorType 112
Initialization 41
InitStage1 43
InitStage2 43
Interrupt Handling 45
InterruptAllStatus 45
interruptHandler 152
interruptID 152
IRQState 45

K
KAL

Functions
KALTimerCreate 213

KAL Error Constants 161
kKALErrBadParam 161
kKALErrInvalidContext 161
kKALErrInvalidID 162
kKALErrNoFreeRAM 161
kKALErrNoFreeResource 161
kKALErrNotOwner 162
kKALErrObjectDeleted 162
kKALErrObjectInvalid 162
kKALErrObjectNotExist 162
kKALErrQueueOverflow 162
kKALErrSemInUse 161
kKALErrWaitReleased 162

KAL Generic API 161
KAL Generic Constants 161
KALEventGroupClear 199
KALEventGroupCreate 200
KALEventGroupDelete 201
KALEventGroupGetInfo 201
KALEventGroupInfoType 198
KALEventGroupRead 202
KALEventGroupWait 203
KALEventGroupWaitParamType 199
KALMailboxCreate 206
KALMailboxDelete 207
KALMailboxInfoType 206
KALMailboxSend 208

KALMailboxWait 209
KALMutexCreate 192
KALMutexDelete 193
KALMutexGetInfo 193
KALMutexInfoType 192
KALMutexRelease 194
KALMutexReserve 195
KALSemaphoreCreate 187
KALSemaphoreDelete 188
KALSemaphoreGetInfo 188
KALSemaphoreInfoType 186
KALSemaphoreSignal 189
KALSemaphoreWait 189
KALTaskInfoType 172, 174, 213
KALTimerCreate 213
KALTimerDelete 214
KALTimerGetInfo 215
KALTimerInfoType 212
KALTimerSet 215
kCoordinatesDouble 114
kCoordinatesNative 114
kCoordinatesOneAndAHalf 114
kCoordinatesStandard 114
Kernel Object Types 157
kEventGroupAll 197
kEventGroupAny 198
Key Manager 49
Keyboard Support 49
Keyboard Support Data Structures 50
Keyboard Support Masks

Key Mask 49
KeyRates 124
kHAL

kHAL_RegisterInterruptHandle 151
kHAL_CPULock 149
kHAL_CPUUnlock 149
kHAL_CreateInitialTaskContext 150
kHAL_DisableInt 150
kHAL_Doze 150
kHAL_EnableInt 151
kHAL_Init 151
kHAL_RegisterInterruptHandler

Functions 151
kHAL_SwitchToFirstTask 153

222 DAL Reference
PalmSource Confidential

kHALDispAddr 24
kHALDispAllDepth 24
kHALDispBacklight 24
kHALDispBootDepth 24
kHALDispBrightness 25
kHALDispColor 25
kHALDispContrast 25
kHALDispDensity 25
kHALDispDepth 25, 26
kHALDispDgtScale 26
kHALDispDgtStdScale 26
kHALDispHeight 26
kHALDispInputAreaBmp 27
kHALDispInputAreaSelectedBmp 28
kHALDispMAXDepth 28
kHALDispName 28, 29
kHALDispPixelFormat 29
kHALDispRowBytes 29
kHALDispSilkScreenLoc 27
kHALDispVRAMAddr 29
kHALDispVRAMSize 29, 30
kHALDispWidth 29
kHALDockStatusCharging 5
kHALDockStatusDockAttached 5
kHALDockStatusMfgTestCradleAttached 6
kHALDockStatusModemAttached 5
kHALDockStatusPeripheralAttached 6
kHALDockStatusUndocked 5
kHALDockStatusUSBCradleAttached 5
kHALDockStatusUSBPeripheralAttached 6
kHALDockStatusUsingExternalPower 5
kKALErrBadParam 161
kKALErrInvalidContext 161
kKALErrInvalidID 162
kKALErrNoFreeRAM 161
kKALErrNoFreeResource 161
kKALErrNotOwner 162
kKALErrObjectDeleted 162
kKALErrObjectInvalid 162
kKALErrObjectNotExist 162
kKALErrQueueOverflow 162
kKALErrSemInUse 161
kKALErrWaitReleased 162

kTaskStateDormant 170
kTaskStateReady 170
kTaskStateRunning 170
kTaskStateSuspended 170
kTaskStateWaiting 170
kTaskStateWaitSuspend 170
kTaskWaitCauseDelay 171
kTaskWaitCauseEventGroup 171
kTaskWaitCauseMailbox 171
kTaskWaitCauseMutex 171
kTaskWaitCauseSemaphore 171
kTaskWaitCauseWait 171
kTimerStopped 212

M
Mailbox Functions 206
Mailbox Messages 205
Mailbox Structures and Constants 206
Mailboxes 205
Memory 67
Memory Data Structures 67
MHALGetHwrWakeUp 63
Miscellaneous Functions

Boot Functions 60
Hardware Events 61
Random Seed 59
Reset 62

Mutex Functions 192
Mutexes 191

O
Object Count Limits 158
Object ID Numbers 158

P
PalmOSMain 60
Pen Manager 17
PenCalibrate 18
PenMgrEZRefPrv.h 18, 30
PointType 18
portBkgndModeSupported 81
portCncMgrVisible 82
portCradlePort 82

DAL Reference 223
PalmSource Confidential

portExternalPort 82
portIRDACapable 82
portModemPort 82
portPrivateUse 82
portRS232Capable 81
portUSBCapable 82
Power States Data Structures 55

R
Real Time Clock 73
RectangleType 112
Reset_A 44
RGBColorType 30, 113

S
Screen 99
Screen Data Structures

CanvasType (double-density) 108
Screen Manager Functions 124
ScrUpdateScreenBitmap 122
Semaphore Functions 187
Semaphore Structures and Constants 186
Semaphores 185
Serial Driver 77, 124
Sound 133
Sound Support Functions 136
SysBatteryKind 6
SysBatteryState 7

T
Task Structures, Constants, and Types 170
Task Wait Cause Constants 171
Tasks 165

Delaying 166
Priorities and Scheduling 169
Suspending and Resuming 168
Wait and Wake 166

Tasks Lists 168
The Semaphore Count 185
Time Manager 143
Timer Functions 213
Timer State Constants 212
Timer Structures, Constants, and Types 212

Timer Support 143
Timers 211
Trace Functions 13
Trace Macros 16
Typographical Conventions xix

U
UsbConnect 96
UsbDeviceRequestType 95
UsbDisconnect 96
USBRequestGetExtConnectionInfo 97

V
VdrvAPIType 84
VdrvConfigType 85
VdrvDataPtr 86
vdrvOpCodeClearErr 87
vdrvOpCodeFlushRxFIFO 88, 89
vdrvOpCodeFlushTxFIFO 88, 89
vdrvOpCodeGetDTRAsserted 90
vdrvOpCodeGetOptTransmitSize 88, 89
vdrvOpCodeGetRcvTheshold 88, 89
vdrvOpCodeGetUSBConfigDescriptor 90
vdrvOpCodeGetUSBDeviceDescriptor 90
vdrvOpCodeNotifyBytesReadFromQ 90
vdrvOpCodeSendBufferedData 88, 89
vdrvOpCodeSetBaudRate 87
vdrvOpCodeSetCtsTimeout 87
vdrvOpCodeSetDTRAsserted 90
vdrvOpCodeSetSettingsFlags 87
vdrvOpCodeSetSleepMode 87
vdrvOpCodeSetWakeupMode 88, 89
vdrvOpCodeStartBreak 88, 89
vdrvOpCodeStartLoopback 88, 89
vdrvOpCodeStopBreak 88, 89
vdrvOpCodeStopLoopback 88, 89
vdrvOpCodeTxFIFOCount 88, 89
vdrvOpCodeWaitForConfiguration 90

W
window coordinate system constants 114
WinDrawOperation Enumeration 114
WinLockInitType 113

224 DAL Reference
PalmSource Confidential

	Device Abstraction Layer (DAL) Reference
	Table of Contents
	About This Document
	What This Document Contains
	The HAL
	The kHAL
	The KAL

	Related Documentation
	Additional Resources
	Typographical Conventions

	Hardware Abstraction Layer (HAL)
	The HAL
	HAL Interface
	Sample HAL
	File names
	Assembly-Language Code
	Intended Audience
	What This Section Contains

	Battery Support
	Battery Support Constants
	HALDockStatus Constants

	Battery Support Data Structures
	SysBatteryKind
	SysBatteryState

	Battery Support Functions
	HALBatteryGetInfo
	HALBatteryGetValidKinds
	HALBatterySetInfo
	HALDockStatus

	Tracing
	Trace Data Structures
	Trace Functions
	HALTraceClose
	HALTraceInit
	HALTraceOutputB
	HALTraceOutputT
	HALTraceOutputVT

	Trace Macros

	Digitizer Support
	Digitizer Support Data Structures
	Coord
	PointType

	Digitizer Support Functions
	HALPenCalibrate
	HALPenRawToScreen
	HALPenResetCalibration
	HALPenScreenToRaw

	Display
	Display Data Constants
	Display Attribute Constants

	Display Data Structures
	RGBColorType

	Display Functions
	HALDisplayDrawBootScreen
	HALDisplayGetAttributes
	HALDisplayGetPalette
	HALDisplaySetAttributes
	HALDisplaySetPalette
	HALDisplayDoze
	HALDisplayLock
	HALDisplaySleep
	HALDisplayUnlock
	HALDisplayWake

	Initialization
	HwrPostDebugInit
	HwrPreDebugInit
	HwrPreRAMInit
	InitStage1
	InitStage2
	Reset_A

	Interrupt Handling
	Interrupt Handling Data Structures
	InterruptAllStatus
	IRQState

	Interrupt Functions
	HALInterruptAllSetStatus
	HALInterruptGetHandler
	HALInterruptSetHandler
	HALInterruptSetState
	HwrInterruptsInit

	Keyboard Support
	Keyboard Support Masks
	Key Mask

	Keyboard Support Data Structures
	Keyboard Support Functions
	HALKeyGetRates
	HALKeyGetState
	HALKeyResetDoubleTap
	HALKeySetMask
	HALKeySetRates

	Power States
	Power States Data Structures
	Power States Functions
	HALPowerGetAutoOffEvtTime
	HALPowerGetAutoOffSeconds
	HALPowerSetAutoOffEvtTime
	HALPowerSetAutoOffSeconds
	HALPowerSleepReady

	Miscellaneous Functions
	Random Seed
	HALRandomInitializeSeed

	Boot Functions
	HALSetInitStage
	PalmOSMain

	Hardware Events
	HALEventPost
	HALEventRegisterCallback

	Reset
	HALReset

	Miscellaneous Functions
	HALGetHwrMiscFlags
	HALGetHwrMiscFlagsExt
	HALGetHwrWakeUp
	HALGetROMToken
	HALOEMGetCompanyID
	HALOEMGetDeviceID
	HALOEMGetHALID
	HALProcessorID
	HALSetHwrMiscFlags

	Memory
	Memory Data Structures
	HALMemoryMap
	HALMemoryRegionType
	HALMemoryType
	Example

	Memory Map Functions
	HALMemoryGetMemoryMap

	Memory Protection Functions
	HALMemoryGetStorageAreaProtectionState
	HALMemorySetStorageAreaProtectionState

	Real Time Clock Support
	Real Time Clock Support Data Structures
	Real Time Clock Support Functions
	HALTimeGetAlarm
	HALTimeGetSeconds
	HALTimeGetSystemTime
	HALTimeGetSystemTimerInterval
	HALTimeSetAlarm
	HALTimeSetSeconds

	Serial Drivers
	Brief Overview of Virtual Drivers
	Virtual Driver Data Structures
	DrvEntryOpCodeEnum
	DrvInfoType
	DrvRcvQTag
	VdrvAPIType
	VdrvConfigType
	VdrvDataPtr

	Virtual Driver Functions
	HALSerialClose
	HALSerialControl
	HALSerialControlCustom
	HALSerialEntryPoint
	HALSerialOpen
	HALSerialStatus
	HALSerialWrite

	USB Data Structures
	UsbDeviceRequestType

	USB Driver Functions
	UsbConnect
	UsbDisconnect
	UsbHwrInit
	UsbRequestGetExtConnectionInfo

	Screen
	Blitter Supports High Density
	Intermediate Buffer Not Needed
	Screen Data Structures
	AbsRectType
	BitmapCompressionType
	BitmapFlagsType
	BitmapTypeV3
	BltBitmapType
	CanvasType
	ColorTableType
	CustomPatternType
	DrawStateType
	IndexedColorType
	PointType
	RectangleType
	RGBColorType
	WinLockInitType

	Window Constants
	Window Coordinate System Constants
	WinDrawOperation Enumeration

	Screen Manager Functions
	HALRedrawInputArea
	HALScreenDefaultPalette
	HALScreenDrawNotify
	HALScreenGetColortable
	HALScreenInit
	HALScreenLock
	HALScreenPalette
	HALScreenSendUpdateArea
	HALScreenUnlock
	HALScreenUpdateBitmap

	Blitter Functions
	HALDraw_Bitmap
	HALDraw_Chars
	HALDraw_FindIndexes
	HALDraw_GetPixel
	HALDraw_Line
	HALDraw_Pixels
	HALDraw_Rectangle
	HALDrawInit

	Sound Support
	HAL Sound Structures and Constants
	HALSndIoctlCmds
	HALSoundAllocStreamBufType
	HALSoundInitStreamType

	HAL Sound Support Functions
	HALPlaySmf
	HALSoundClose
	HALSoundDispose
	HALSoundInitialize
	HALSoundIoctl
	HALSoundOff
	HALSoundOpen
	HALSoundPlay
	HALSoundRead
	HALSoundSleep
	HALSoundWake
	HALSoundWrite

	Timer Support
	Timer Support Data Structures
	Timer Support Functions
	HALDelay

	Kernel Hardware Abstraction Layer (kHAL)
	kHAL Functions
	Overview
	kHAL Functions
	kHAL_CPULock
	kHAL_CPUUnlock
	kHAL_CreateInitialTaskContext
	kHAL_DisableInt
	kHAL_Doze
	kHAL_EnableInt
	kHAL_Init
	kHAL_RegisterInterruptHandler
	kHAL_SetTaskReturnValue
	kHAL_SwitchToFirstTask

	Kernel Abstraction Layer (KAL)
	The KAL
	Kernel Object Types
	Object Count Limits
	Object ID Numbers

	KAL Generic API
	KAL Generic Constants
	KAL Error Constants
	KAL Timeout Constants

	KAL Startup Functions
	KALInit
	KALStart

	Tasks
	Creating, Starting, and Stopping a Task
	Synchronizing Tasks
	Delaying
	Wait and Wake
	Suspending and Resuming

	Tasks Lists
	Priorities and Scheduling
	Task Structures, Constants, and Types
	Task State Constants
	Task Wait Cause Constants
	KALTaskCreateParamType
	KALTaskInfoType
	KALTaskProcPtr

	Task Functions
	KALTaskCreate
	KALTaskDelay
	KALTaskDelete
	KALTaskExit
	KALTaskGetCurrentID
	KALTaskGetInfo
	KALTaskResume
	KALTaskStart
	KALTaskSuspend
	KALTaskSwitching
	KALTaskWait
	KALTaskWaitClr
	KALTaskWake

	Semaphores
	The Semaphore Count
	Semaphore Structures and Constants
	KALSemaphoreInfoType

	Semaphore Functions
	KALSemaphoreCreate
	KALSemaphoreDelete
	KALSemaphoreGetInfo
	KALSemaphoreSignal
	KALSemaphoreWait

	Mutexes
	Mutex Structures and Constants
	KALMutexInfoType

	Mutex Functions
	KALMutexCreate
	KALMutexDelete
	KALMutexGetInfo
	KALMutexRelease
	KALMutexReserve

	Event Groups
	Event Group Structures and Constants
	Event Group Wait Mode Constants
	KALEventGroupInfoType
	KALEventGroupWaitParamType

	Event Group Functions
	KALEventGroupClear
	KALEventGroupCreate
	KALEventGroupDelete
	KALEventGroupGetInfo
	KALEventGroupRead
	KALEventGroupSignal
	KALEventGroupWait

	Mailboxes
	Mailbox Messages
	Mailbox Structures and Constants
	KALMailboxInfoType

	Mailbox Functions
	KALMailboxCreate
	KALMailboxDelete
	KALMailboxGetInfo
	KALMailboxSend
	KALMailboxWait

	Timers
	Timer Structures, Constants, and Types
	Timer State Constants
	KALTimerInfoType
	KALTimerProcPtr

	Timer Functions
	KALTimerCreate
	KALTimerDelete
	KALTimerGetInfo
	KALTimerSet

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	M
	O
	P
	R
	S
	T
	U
	V
	W

